•numpy.stack(arrays, axis = 0, out = None) 沿新轴连接一系列数组
array01=np.array([[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]]) array02 = np.arange(24,48).reshape(4,6) array02 # 结果 array([[24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41], [42, 43, 44, 45, 46, 47]])
# 拼接行 np.stack((array01,array02)) # 结果 array([[[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]], [[24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41], [42, 43, 44, 45, 46, 47]]])
# 拼接列 np.stack((array01,array02),axis=1) # 结果 array([[[ 0, 1, 2, 3, 4, 5], [24, 25, 26, 27, 28, 29]], [[ 6, 7, 8, 9, 10, 11], [30, 31, 32, 33, 34, 35]], [[12, 13, 14, 15, 16, 17], [36, 37, 38, 39, 40, 41]], [[18, 19, 20, 21, 22, 23], [42, 43, 44, 45, 46, 47]]])总结
np.stack()和np.row_stack()、np.column_stack()是不一样的。
np.row_stack((array01,array02)) # 结果 array([[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41], [42, 43, 44, 45, 46, 47]])
np.stack()形成是三维数组。
np.row_stack()形成的是二维数组,行拼接在一起
np.column_stack((array01,array02)) # 结果 array([[ 0, 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29], [ 6, 7, 8, 9, 10, 11, 30, 31, 32, 33, 34, 35], [12, 13, 14, 15, 16, 17, 36, 37, 38, 39, 40, 41], [18, 19, 20, 21, 22, 23, 42, 43, 44, 45, 46, 47]])
np.stack()形成是三维数组,两个数组的行交叉在一起。
np.column_stack()形成的是二维数组,列拼接在一起。
再看 np.concatenate()
np.concatenate((array01,array02)) # 结果 array([[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41], [42, 43, 44, 45, 46, 47]]) np.concatenate((array01,array02),axis=1) # 结果 array([[ 0, 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29], [ 6, 7, 8, 9, 10, 11, 30, 31, 32, 33, 34, 35], [12, 13, 14, 15, 16, 17, 36, 37, 38, 39, 40, 41], [18, 19, 20, 21, 22, 23, 42, 43, 44, 45, 46, 47]])
再看 np.vstack()和np.hstack()。
np.vstack((array01,array02)) # 结果 array([[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41], [42, 43, 44, 45, 46, 47]]) np.hstack((array01,array02)) # 结果 array([[ 0, 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29], [ 6, 7, 8, 9, 10, 11, 30, 31, 32, 33, 34, 35], [12, 13, 14, 15, 16, 17, 36, 37, 38, 39, 40, 41], [18, 19, 20, 21, 22, 23, 42, 43, 44, 45, 46, 47]])
由此可见,np.concatenate()和np.row_stack()、np.vstack()的效果一样。
np.concatenate(,axis=1)和np.column_stack()、np.hstack()的效果一样。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)