import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Crime {
private static class CMapper extends Mapper
Text dis=new Text();
Text cnumber =new Text();
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
String line = value.toString();
String[] l = line.split(",");
dis.set(l[11]);
cnumber.set(l[1]);
context.write(dis, cnumber);
}
}
public static class CReduce extends Reducer
private int sum=0;
public void reduce(Text key, Iterable
for(Text t : values){
sum=sum+1;
}
context.write(new Text(key),new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
Job job=Job.getInstance(conf,“crime1”);
job.setJobName(“crime1”);
job.setJarByClass(Crime.class);
job.setMapperClass(CMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setReducerClass(CReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
job.waitForCompletion(true);
}
}
这里是按从小到大的顺序进行警区的排序,由此看出犯罪数量最少的警区是警区1,犯罪数量最多的是警区934,判断出来警区1 的治安比较好。
2.这里是按警区进行分组,然后统计每一组的逮捕数量,逮捕数量即为警察在案件发生后,成功抓捕犯罪人员的次数。逮捕数量高,说明这个警区的警察抓捕成功率更高,更容易抓到犯罪人员。
//这里的代码实现的是按地区District进行分组,然后统计逮捕数
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Crime {
private static class CMapper extends Mapper
Text dis=new Text();
//private final static IntWritable one = new IntWritable();
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
String line = value.toString();
String[] l = line.split(",");
dis.set(l[11]);
String arr=l[8];
String a =“FALSE”;
int b=0;
if (arr.equals(a)){
b=1;
}
else {
b=0;
}
if(b==0){
context.write(dis, new IntWritable(1));
}
}
}
public static class CReduce extends Reducer
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException{
int count = 0;
for (IntWritable val : values) {
count = count +val.get();
}
context.write(new Text(key), new IntWritable(count));
}
}
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
Job job=Job.getInstance(conf,“crime1”);
job.setJobName(“crime1”);
job.setJarByClass(Crime.class);
job.setMapperClass(CMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(CReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
job.waitForCompletion(true);
}
}
3.将上面两个分析的结果文件合并在一起,文件合并,合并后的文件名称为ave
import java.io.IOException;
import java.util.Vector;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.FloatWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFor
《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》
【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享
mat;
public class Crime {
private static class CMapper extends Mapper
private FileSplit inputsplit;
int cnum=0;
int arr1=0;
Text dis=new Text();
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
inputsplit = (FileSplit)context.getInputSplit();
String filename = inputsplit.getPath().getName();
if(filename.contains(“cnumber”)){
String s1 = value.toString();
String[] split1 = s1.split("t");
dis=new Text(split1[0]);
cnum=Integer.parseInt(split1[1]);
context.write(dis, new Text(“cnumber”+cnum));
}
if(filename.contains(“arr”)){
String s2 = value.toString();
String[] split2 = s2.split("t");
dis=new Text(split2[0]);
arr1=Integer.parseInt(split2[1]);
context.write(dis, new Text(“arr”+arr1));
}
}
}
public static class CReduce extends Reducer
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException{
Vector a = new Vector();
Vector b = new Vector();
for(IntWritable value : values){
String line = value.toString();
if(line.startsWith(“cnumber”)){
a.add(line.substring(“cnumber”.length()));
}
if(line.startsWith(“arr”)){
b.add(line.substring(“arr”.length()));
}
}
for(String w1 : a) {
for(String w2 : b){
context.write(new Text(key+"/t"+w1),new Text(w2));
}
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf=new Configuration();
Job job=Job.getInstance(conf,“crime1”);
job.setJobName(“crime1”);
job.setJarByClass(Crime.class);
job.setMapperClass(CMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setReducerClass(CReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
job.waitForCompletion(true);
}
}
4.计算每个警区的逮捕率,逮捕率即说明各个警区的破案效率,逮捕率高说明破案速度更快,该警区的治安情况就可能会更好。
这里写了一个ave类,用来放入案件数量和逮捕数量。
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)