DSP F28335时钟及控制系统

DSP F28335时钟及控制系统,第1张

DSP F28335时钟及控制系统 1.F28335系统时钟来源

       图中用绿色文字标识出从外部晶振如何设置自己想要的CPU时钟频率 ,通常我们选用的外部晶振为30MHz,硬件连接如图中所示,通过PLL使能后先进行倍频,倍频的倍数值是由寄存器规定,不可用寄存器规定值之外的数组进行倍频,分频数值同理。这里的30MHz最多可以让CPU的时钟达到150MHz,具体过程为30MHz*10(倍频数)/2(分频数)=150MHz。

(1)外部时钟源信号接入方法有2种,分别针对的是电压为3.3V的外部时钟和1.9V的外部时钟。          (A)外部时钟信号接入方式1,即采用3.3V的外部时钟。

         这里的VDDIO数值在0-3.3V之间。

     (B)外部时钟信号接入方式2,即采用1.9V的外部时钟。

         这里的VDD数值在0-1.9V之间。

(2)内部时钟源信号接法(推荐)

         通常晶振选中30MHz

2.F28335系统控制及外设时钟

 3.时钟单元常用寄存器

 3.1 外设时钟控制寄存器PCLCCR0/1/3

(1)外设时钟控制寄存器PCLKCR0各位定义

 (2)外设时钟控制寄存器PCLKCR1各位定义

(3)外设时钟控制寄存器PCLKCR3各位定义

 4.自定义系统时钟
//#define DSP28_DIVSEL   0   // Enable /4 for SYSCLKOUT
//#define DSP28_DIVSEL   1 // Disable /4 for SYSCKOUT
#define DSP28_DIVSEL     2 // Enable /2 for SYSCLKOUT
//#define DSP28_DIVSEL     3 // Enable /1 for SYSCLKOUT

#define DSP28_PLLCR   10
//#define DSP28_PLLCR    9
//#define DSP28_PLLCR    8
//#define DSP28_PLLCR    7
//#define DSP28_PLLCR    6
//#define DSP28_PLLCR    5
//#define DSP28_PLLCR    4
//#define DSP28_PLLCR    3
//#define DSP28_PLLCR    2
//#define DSP28_PLLCR    1
//#define DSP28_PLLCR    0  // PLL is bypassed in this mode
//---------------------------------------------------------------------------
// InitSysCtrl:
//---------------------------------------------------------------------------
// 这段函数的功能就是将系统控制寄存器初始化到想要的状态;
//具体步骤可以分成四部分:
// - 禁止看门狗电路
// - 给PLLCR寄存器赋值以获得想要的系统时钟频率
// - 给高、低速外设时钟预定标寄存器赋值以获得想要的高、低速外设时钟频率
// - 对需要使用的外设时钟进行使能

void InitSysCtrl(void)
{

   // Disable the watchdog
   DisableDog();

   // Initialize the PLL control: PLLCR and DIVSEL
   // DSP28_PLLCR and DSP28_DIVSEL are defined in DSP2833x_Examples.h
   InitPll(DSP28_PLLCR,DSP28_DIVSEL);

   // Initialize the peripheral clocks
   InitPeripheralClocks();
}
//---------------------------------------------------------------------------
// PLL相关寄存器初始化函数
//---------------------------------------------------------------------------
// 此函数初始化PLLSTS[CLKINDIV]和PLLCR控制寄存器

void InitPll(Uint16 val, Uint16 divsel)//val 倍频系数   divsel 分频系数
{

   // Make sure the PLL is not running in limp mode
   if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0)
   {
      // Missing external clock has been detected
      // Replace this line with a call to an appropriate
      // SystemShutdown(); function.
      asm("        ESTOP0");
   }

   // DIVSEL MUST be 0 before PLLCR can be changed from
   // 0x0000. It is set to 0 by an external reset XRSn
   // This puts us in 1/4
   if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0)
   {
       EALLOW;
       SysCtrlRegs.PLLSTS.bit.DIVSEL = 0;
       EDIS;
   }

   // Change the PLLCR
   if (SysCtrlRegs.PLLCR.bit.DIV != val)
   {

      EALLOW;
      // Before setting PLLCR turn off missing clock detect logic
      SysCtrlRegs.PLLSTS.bit.MCLKOFF = 1;
      SysCtrlRegs.PLLCR.bit.DIV = val;
      EDIS;

      // Optional: Wait for PLL to lock.
      // During this time the CPU will switch to OSCCLK/2 until
      // the PLL is stable.  once the PLL is stable the CPU will
      // switch to the new PLL value.
      //
      // This time-to-lock is monitored by a PLL lock counter.
      //
      // Code is not required to sit and wait for the PLL to lock.
      // However, if the code does anything that is timing critical,
      // and requires the correct clock be locked, then it is best to
      // wait until this switching has completed.

      // Wait for the PLL lock bit to be set.

      // The watchdog should be disabled before this loop, or fed within
      // the loop via ServiceDog().

	  // Uncomment to disable the watchdog
      DisableDog();

      while(SysCtrlRegs.PLLSTS.bit.PLLLOCKS != 1)
      {
	      // Uncomment to service the watchdog
          // ServiceDog();
      }

      EALLOW;
      SysCtrlRegs.PLLSTS.bit.MCLKOFF = 0;
      EDIS;
    }

    // If switching to 1/2
	if((divsel == 1)||(divsel == 2))
	{
		EALLOW;
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = divsel;
	    EDIS;
	}

	// If switching to 1/1
	// * First go to 1/2 and let the power settle
	//   The time required will depend on the system, this is only an example
	// * Then switch to 1/1
	if(divsel == 3)
	{
		EALLOW;
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = 2;
	    DELAY_US(50L);
	    SysCtrlRegs.PLLSTS.bit.DIVSEL = 3;
	    EDIS;
    }
}
//--------------------------------------------------------------------------
// 函数名:初始化外设时钟
//---------------------------------------------------------------------------
//这个是用来初始化外设模块的时钟,具体分2个步骤:
//首先设置高、低速外设预定标寄存器;
//第二是对各个外设时钟进行有选择的使能;
//为了降低功耗,尽量不使能不用的外设模块时钟;
//
//注:如果某一外设时钟没使能,则不能对其相关的寄存器进行读写;

void InitPeripheralClocks(void)
{
   EALLOW;

// HISPCP/LOSPCP prescale register settings, normally it will be set to default values
   SysCtrlRegs.HISPCP.all = 0x0001;
   SysCtrlRegs.LOSPCP.all = 0x0002;//Lowspeedclock=SYSCLKOUT/4=150/4=37.5MHZ;

// XCLKOUT to SYSCLKOUT ratio.  By default XCLKOUT = 1/4 SYSCLKOUT
   // XTIMCLK = SYSCLKOUT/2
   XintfRegs.XINTCNF2.bit.XTIMCLK = 1;
   // XCLKOUT = XTIMCLK/2
   XintfRegs.XINTCNF2.bit.CLKMODE = 1;
   // Enable XCLKOUT
   XintfRegs.XINTCNF2.bit.CLKOFF = 0;

// Peripheral clock enables set for the selected peripherals.
// If you are not using a peripheral leave the clock off
// to save on power.
//
// Note: not all peripherals are available on all 2833x derivates.
// Refer to the datasheet for your particular device.
//
// This function is not written to be an example of efficient code.

   SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1;    // ADC

   // *importANT*
   // The ADC_cal function, which  copies the ADC calibration values from TI reserved
   // OTP into the ADCREFSEL and ADCOFFTRIM registers, occurs automatically in the
   // Boot ROM. If the boot ROM code is bypassed during the debug process, the
   // following function MUST be called for the ADC to function according
   // to specification. The clocks to the ADC MUST be enabled before calling this
   // function.
   // See the device data manual and/or the ADC Reference
   // Manual for more information.

   ADC_cal();

   SysCtrlRegs.PCLKCR0.bit.I2CAENCLK = 1;   // I2C
   SysCtrlRegs.PCLKCR0.bit.SCIAENCLK = 1;   // SCI-A
   SysCtrlRegs.PCLKCR0.bit.SCIBENCLK = 1;   // SCI-B
   SysCtrlRegs.PCLKCR0.bit.SCICENCLK = 1;   // SCI-C
   SysCtrlRegs.PCLKCR0.bit.SPIAENCLK = 1;   // SPI-A
   SysCtrlRegs.PCLKCR0.bit.MCBSPAENCLK = 1; // McBSP-A
   SysCtrlRegs.PCLKCR0.bit.MCBSPBENCLK = 1; // McBSP-B
   SysCtrlRegs.PCLKCR0.bit.ECANAENCLK=1;    // eCAN-A
   SysCtrlRegs.PCLKCR0.bit.ECANBENCLK=1;    // eCAN-B

   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;   // Disable TBCLK within the ePWM
   SysCtrlRegs.PCLKCR1.bit.EPWM1ENCLK = 1;  // ePWM1
   SysCtrlRegs.PCLKCR1.bit.EPWM2ENCLK = 1;  // ePWM2
   SysCtrlRegs.PCLKCR1.bit.EPWM3ENCLK = 1;  // ePWM3
   SysCtrlRegs.PCLKCR1.bit.EPWM4ENCLK = 1;  // ePWM4
   SysCtrlRegs.PCLKCR1.bit.EPWM5ENCLK = 1;  // ePWM5
   SysCtrlRegs.PCLKCR1.bit.EPWM6ENCLK = 1;  // ePWM6
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;   // Enable TBCLK within the ePWM

   SysCtrlRegs.PCLKCR1.bit.ECAP3ENCLK = 1;  // eCAP3
   SysCtrlRegs.PCLKCR1.bit.ECAP4ENCLK = 1;  // eCAP4
   SysCtrlRegs.PCLKCR1.bit.ECAP5ENCLK = 1;  // eCAP5
   SysCtrlRegs.PCLKCR1.bit.ECAP6ENCLK = 1;  // eCAP6
   SysCtrlRegs.PCLKCR1.bit.ECAP1ENCLK = 1;  // eCAP1
   SysCtrlRegs.PCLKCR1.bit.ECAP2ENCLK = 1;  // eCAP2
   SysCtrlRegs.PCLKCR1.bit.EQEP1ENCLK = 1;  // eQEP1
   SysCtrlRegs.PCLKCR1.bit.EQEP2ENCLK = 1;  // eQEP2

   SysCtrlRegs.PCLKCR3.bit.CPUTIMER0ENCLK = 1; // CPU Timer 0
   SysCtrlRegs.PCLKCR3.bit.CPUTIMER1ENCLK = 1; // CPU Timer 1
   SysCtrlRegs.PCLKCR3.bit.CPUTIMER2ENCLK = 1; // CPU Timer 2

   SysCtrlRegs.PCLKCR3.bit.DMAENCLK = 1;       // DMA Clock
   SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1;     // XTIMCLK
   SysCtrlRegs.PCLKCR3.bit.GPIOINENCLK = 1;    // GPIO input clock

   EDIS;
}

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5659309.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-16
下一篇 2022-12-16

发表评论

登录后才能评论

评论列表(0条)

保存