您可以使用np.where。如果
cond是布尔数组,
A并且
B是数组,则
C = np.where(cond, A, B)
将C定义为等于
A哪里
cond为True,
B哪里
cond为False。
import numpy as npimport pandas as pda = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]df = pd.Dataframe(a, columns=['one', 'two', 'three'])df['que'] = np.where((df['one'] >= df['two']) & (df['one'] <= df['three']) , df['one'], np.nan)
产量
one two three que0 10 1.2 4.2 101 15 70 0.03 NaN2 8 5 0 NaN
如果您有多个条件,则可以使用np.select代替。例如,如果你想
df['que']等于
df['two']时
df['one']< df['two'],则
conditions = [ (df['one'] >= df['two']) & (df['one'] <= df['three']), df['one'] < df['two']]choices = [df['one'], df['two']]df['que'] = np.select(conditions, choices, default=np.nan)
产量
one two three que0 10 1.2 4.2 101 15 70 0.03 702 8 5 0 NaN
如果我们可以假设
df['one'] >= df['two']when
df['one'] < df['two']为False,那么条件和选择可以简化为
conditions = [ df['one'] < df['two'], df['one'] <= df['three']]choices = [df['two'], df['one']]
(如果包含
df['one']或
df['two']包含NaN,则该假设可能不正确。)
注意
a = [['10', '1.2', '4.2'], ['15', '70', '0.03'], ['8', '5', '0']]df = pd.Dataframe(a, columns=['one', 'two', 'three'])
用字符串值定义一个Dataframe。由于它们看起来是数字,因此最好将这些字符串转换为浮点数:
df2 = df.astype(float)
但是,这会改变结果,因为字符串会逐个字符地进行比较,而浮点数会进行数字比较。
In [61]: '10' <= '4.2'Out[61]: TrueIn [62]: 10 <= 4.2Out[62]: False
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)