前段时间看了字节跳动内部技术沙龙分享,利用kafka engine构造的实时数据架构。故利用现有的资源,整起来。
实践过程- kafka engine的使用,常用架构如下:kafka engine表+materialized view+ ReplicatedReplacingMergeTree的形式。
kafka engine表:消费kafka数据,保存着最原始的数据格式。
ReplicatedReplacingMergeTree表:合并树表,用来存储ods层数据。
materialized view(物化视图):连接kafka engine表跟ods层的桥梁。
- kafka消息体如下:
{ "data":{ "order_id":"0001", "update_time":"2021-01-01 00:00:00" }, "modify_time":"2021-01-01 00:00:00" }
- 建表
因为kafka消息体中,含有嵌套的json,所以kafka Engine表并没有以JSONEachRow进行分割,而是采用了TabSeparated。如果用JSONEachRow,内部的json内容存不了。
use tmp_db; -- kafka引擎表 CREATE TABLE order_info_kafka ( `message` String ) ENGINE = Kafka('${ip}:${host},${ip}:${host}', '${kafa_topic}', '${groupId}') SETTINGS kafka_format = 'TabSeparated' ,kafka_num_consumers = 4 -- mergetree引擎表 CREATE TABLE order_info_d_mt ( , data String , `event_date` String , `order_id` String , update_time String , modify_time String , `version_id` String ) ENGINE = ReplicatedReplacingMergeTree('/clickhouse/{cluster}/tmp_db/order_info_d_mt/{shard}', '{replica}', version_id) PARTITION BY event_date PRIMARY KEY (event_date, order_id) ORDER BY (event_date, order_id) SETTINGS index_granularity = 8192 -- 物化视图 CREATE materialized view if not exists order_info_d_view to order_info_d_mt as select JSONExtractRaw(message,'data') as data , substring(JSONExtractString(message,'modify_time'),1,10) as event_date , JSONExtractString(data,'order_id') as order_id , JSONExtractString(data,'update_time') as update_time , JSONExtractString(message,'modify_time') as modify_time , case when modify_time = '' then '0' else replaceRegexpOne(modify_time,'(\d{4})-(\d{2})-(\d{2}) (\d{2}):(\d{2}):(\d{2})','') end as version_id from order_info_d_kafka
- 至此,实时数据从kafka->clickhouse的ods,就跑通了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)