- 一、彩色图像转换
- 二、车牌数字分割
- (一)图片
- (二)完整代码
- (三)结果
- 参考文献
图片(目录不能有中文,不然后面会出错)
#导入包 import os import shutil import cv2 import numpy as np file_path = "D:/jupyter/car/picture/" licenses = os.listdir(file_path) for license in licenses: path = file_path+license output_path = "D:/jupyter/car/"+license # 图片输出路径 # 如果该路径存在则删除 if os.path.isdir(output_path): shutil.rmtree(output_path) # 创建文件夹 os.mkdir(output_path) # 1.读取图片 src = cv2.imread(path) img = src.copy() # 2.去除车牌上螺丝,将其替换为车牌底色 cv2.circle(img, (145, 20), 10, (255, 0, 0), thickness=-1) cv2.circle(img, (430, 20), 10, (255, 0, 0), thickness=-1) cv2.circle(img, (145, 170), 10, (255, 0, 0), thickness=-1) cv2.circle(img, (430, 170), 10, (255, 0, 0), thickness=-1) cv2.circle(img, (180, 90), 10, (255, 0, 0), thickness=-1) # 3.灰度 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 4.高斯滤波 GSblurred = cv2.GaussianBlur(gray, (5, 5), 12) # 5.将灰度图二值化设定阈值 ret, thresh = cv2.threshold(GSblurred , 127, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) print("ret",ret) # 6. 闭运算 kernel = np.ones((3, 3), int) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel,iterations=2) #二值化 ret, thresh = cv2.threshold(closed, 127, 255, cv2.THRESH_BINARY+ cv2.THRESH_OTSU) # 7.分割字符 white = [] # 记录每一列的白色像素总和 black = [] # ..........黑色....... height = thresh.shape[0] width = thresh.shape[1] white_max = 0 black_max = 0 # 计算每一列的黑白色像素总和 for i in range(width): s = 0 # 这一列白色总数 t = 0 # 这一列黑色总数 for j in range(height): if thresh[j][i] == 255: s += 1 if thresh[j][i] == 0: t += 1 white_max = max(white_max, s) black_max = max(black_max, t) white.append(s) black.append(t) # print(s) # print(t) arg = False # False表示白底黑字;True表示黑底白字 if black_max > white_max: arg = True # 分割图像 def find_end(start_): end_ = start_ + 1 for m in range(start_ + 1, width - 1): if (black[m] if arg else white[m]) > (0.95 * black_max if arg else 0.95 * white_max): # 0.95这个参数请多调整,对应下面的0.05 end_ = m break return end_ n = 1 start = 1 end = 2 i=0; cj=[] while n < width - 2: n += 1 if (white[n] if arg else black[n]) > (0.05 * white_max if arg else 0.05 * black_max): # 上面这些判断用来辨别是白底黑字还是黑底白字 # 0.05这个参数请多调整,对应上面的0.95 start = n end = find_end(start) n = end if end - start > 5: cj.append(thresh[1:height, start:end]) cv2.imwrite(output_path + '/' + str(i) + '.jpg', cj[i]) i += 1;(三)结果
python中出现“Unexpected indent”的原因,已解决
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)