tf.nn.softmax_cross_entropy_with_logits。在文档中
tf.nn.softmax_cross_entropy_with_logits说:
警告:该 *** 作程序期望未缩放的logit,因为它
softmax在logits内部执行on来提高效率。请勿使用的输出调用此opsoftmax,因为它将产生不正确的结果。
因此,在传递给之前,不应在前一层的输出上执行softmax,Sigmoid,relu,tanh或任何其他激活 *** 作
tf.nn.softmax_cross_entropy_with_logits。有关何时使用S形或softmax输出激活的更多详细说明,请参见此处。
因此,通过
return tf.nn.sigmoid(lr)仅
returnlr在
logistic_regression函数中进行替换,模型正在收敛。
以下是具有上述修复功能的代码的有效示例。我还将变量名更改为
epochs,
n_batches因为您的训练循环实际上经历了1000个批次而不是1000个时期(我也将其提高到10000个,因为有迹象表明需要更多的迭代)。
from tensorflow.keras.datasets import fashion_mnistfrom sklearn.model_selection import train_test_splitimport tensorflow as tf(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()x_train, x_test = x_train/255., x_test/255.x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.15)x_train = tf.reshape(x_train, shape=(-1, 784))x_test = tf.reshape(x_test, shape=(-1, 784))weights = tf.Variable(tf.random.normal(shape=(784, 10), dtype=tf.float64))biases = tf.Variable(tf.random.normal(shape=(10,), dtype=tf.float64))def logistic_regression(x): lr = tf.add(tf.matmul(x, weights), biases) #return tf.nn.sigmoid(lr) return lrdef cross_entropy(y_true, y_pred): y_true = tf.one_hot(y_true, 10) loss = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_pred) return tf.reduce_mean(loss)def accuracy(y_true, y_pred): y_true = tf.cast(y_true, dtype=tf.int32) preds = tf.cast(tf.argmax(y_pred, axis=1), dtype=tf.int32) preds = tf.equal(y_true, preds) return tf.reduce_mean(tf.cast(preds, dtype=tf.float32))def grad(x, y): with tf.GradientTape() as tape: y_pred = logistic_regression(x) loss_val = cross_entropy(y, y_pred) return tape.gradient(loss_val, [weights, biases])n_batches = 10000learning_rate = 0.01batch_size = 128dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))dataset = dataset.repeat().shuffle(x_train.shape[0]).batch(batch_size)optimizer = tf.optimizers.SGD(learning_rate)for batch_numb, (batch_xs, batch_ys) in enumerate(dataset.take(n_batches), 1): gradients = grad(batch_xs, batch_ys) optimizer.apply_gradients(zip(gradients, [weights, biases])) y_pred = logistic_regression(batch_xs) loss = cross_entropy(batch_ys, y_pred) acc = accuracy(batch_ys, y_pred) print("Batch number: %i, loss: %f, accuracy: %f" % (batch_numb, loss, acc))(removed printouts)>> Batch number: 1000, loss: 2.868473, accuracy: 0.546875(removed printouts)>> Batch number: 10000, loss: 1.482554, accuracy: 0.718750
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)