使用
list comprehension用于设置新的列名:
df.columns = df.columns.map('_'.join)Or:df.columns = ['_'.join(col) for col in df.columns]
样品:
df = pd.Dataframe({'A':[1,2,2,1], 'B':[4,5,6,4], 'C':[7,8,9,1], 'D':[1,3,5,9]})print (df) A B C D0 1 4 7 11 2 5 8 32 2 6 9 53 1 4 1 9df = df.groupby('A').agg([max, min])df.columns = df.columns.map('_'.join)print (df) B_max B_min C_max C_min D_max D_minA 1 4 4 7 1 9 12 6 5 9 8 5 3
print (['_'.join(col) for col in df.columns])['B_max', 'B_min', 'C_max', 'C_min', 'D_max', 'D_min']df.columns = ['_'.join(col) for col in df.columns]print (df) B_max B_min C_max C_min D_max D_minA 1 4 4 7 1 9 12 6 5 9 8 5 3
如果需要
prefix元组的简单交换项:
df.columns = ['_'.join((col[1], col[0])) for col in df.columns]print (df) max_B min_B max_C min_C max_D min_DA 1 4 4 7 1 9 12 6 5 9 8 5 3
另一个解决方案:
df.columns = ['{}_{}'.format(i[1], i[0]) for i in df.columns]print (df) max_B min_B max_C min_C max_D min_DA 1 4 4 7 1 9 12 6 5 9 8 5 3
如果
lenof列很大(10 ^ 6),则使用
to_series和
str.join:
df.columns = df.columns.to_series().str.join('_')
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)