想法是按日期逐层删除
times的楼层日期时间,并获取开始日期+一天之间的工作日数,然后按
hours3列(如果不是周末时间)
numpy.busday_count创建
hour1和
hour2按楼层按小时数的开始和结束时间列。最后汇总所有小时数列:
df = pd.Dataframe(columns=['Inflow_date_time','End_date_time', 'need'])df.Inflow_date_time= [pd.Timestamp('2019-08-01 23:22:46'),pd.Timestamp('2019-08-03 23:22:46'),pd.Timestamp('2019-08-01 23:22:46'),pd.Timestamp('2019-07-26 23:22:46'),pd.Timestamp('2019-08-05 11:22:46')]df.End_date_time= [pd.Timestamp('2019-08-05 17:43:51')] * 5df.need = [42,17,41,138,6]#print (df)
df["hours1"] = df["Inflow_date_time"].dt.ceil('d')df["hours2"] = df["End_date_time"].dt.floor('d')one_day_mask = df["Inflow_date_time"].dt.floor('d') == df["hours2"]df['hours3'] = [np.busday_count(b,a)*24 for a, b in zip(df['hours2'].dt.strftime('%Y-%m-%d'), df['hours1'].dt.strftime('%Y-%m-%d'))]mask1 = df['hours1'].dt.dayofweek < 5hours1 = df['hours1'] - df['Inflow_date_time'].dt.floor('H')df['hours1'] = np.where(mask1, hours1, np.nan) / np.timedelta64(1 ,'h')mask2 = df['hours2'].dt.dayofweek < 5df['hours2'] = (np.where(mask2, df['End_date_time'].dt.floor('H')-df['hours2'], np.nan) / np.timedelta64(1 ,'h'))df['date_diff'] = df['hours1'].fillna(0) + df['hours2'].fillna(0) + df['hours3']one_day = (df['End_date_time'].dt.floor('H') - df['Inflow_date_time'].dt.floor('H')) / np.timedelta64(1 ,'h')df["date_diff"] = df["date_diff"].mask(one_day_mask, one_day)
print (df) Inflow_date_time End_date_time need hours1 hours2 hours3 2019-08-01 23:22:46 2019-08-05 17:43:51 42 1.0 17.0 24 1 2019-08-03 23:22:46 2019-08-05 17:43:51 17 NaN 17.0 0 2 2019-08-01 23:22:46 2019-08-05 17:43:51 41 1.0 17.0 24 3 2019-07-26 23:22:46 2019-08-05 17:43:51 138 NaN 17.0 120 4 2019-08-05 11:22:46 2019-08-05 17:43:51 6 13.0 17.0 -24 date_diff 0 42.0 1 17.0 2 42.0 3 137.0 4 6.0
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)