1. 介绍中文地址 http://www.apache-druid.cn/
当前市面上主流的大数据实时分析数据库很多,我们为什么选择Apache Druid?我们先做个对比:
Apache Druid是一个实时分析型数据库,旨在对大型数据集进行快速的查询分析("OLAP"查询)。Druid最常被当做数据库来用以支持实时摄取、高性能查询和高稳定运行的应用场景,同时,Druid也通常被用来助力分析型应用的图形化界面,或者当做需要快速聚合的高并发后端API,Druid最适合应用于面向事件类型的数据。
Druid通常应用于以下场景:
1:点击流分析(Web端和移动端) 2:网络监测分析(网络性能监控) 3:服务指标存储 4:供应链分析(制造类指标) 5:应用性能指标分析 6:数字广告分析 7:商务智能 / OLAP
Druid主要特征:
1:列式存储,Druid使用列式存储,这意味着在一个特定的数据查询中它只需要查询特定的列,这样极地提高了部分列查询场景的性能。另外,每一列数据都针对特定数据类型做了优化存储,从而支持快速的扫描和聚合。 2:可扩展的分布式系统,Druid通常部署在数十到数百台服务器的集群中,并且可以提供每秒数百万条记录的接收速率,数万亿条记录的保留存储以及亚秒级到几秒的查询延迟。 3:大规模并行处理,Druid可以在整个集群中并行处理查询。 4:实时或批量摄取,Druid可以实时(已经被摄取的数据可立即用于查询)或批量摄取数据。 5:自修复、自平衡、易于 *** 作,作为集群运维 *** 作人员,要伸缩集群只需添加或删除服务,集群就会在后台自动重新平衡自身,而不会造成任何停机。如果任何一台Druid服务器发生故障,系统将自动绕过损坏。 Druid设计为7*24全天候运行,无需出于任何原因而导致计划内停机,包括配置更改和软件更新。 6:不会丢失数据的云原生容错架构,一旦Druid摄取了数据,副本就安全地存储在深度存储介质(通常是云存储,HDFS或共享文件系统)中。即使某个Druid服务发生故障,也可以从深度存储中恢复您的数据。对于仅影响少数Druid服务的有限故障,副本可确保在系统恢复时仍然可以进行查询。 7:用于快速过滤的索引,Druid使用CONCISE或Roaring压缩的位图索引来创建索引,以支持快速过滤和跨多列搜索。 8:基于时间的分区,Druid首先按时间对数据进行分区,另外同时可以根据其他字段进行分区。这意味着基于时间的查询将仅访问与查询时间范围匹配的分区,这将大大提高基于时间的数据的性能(__time)。 9:近似算法,Druid应用了近似count-distinct,近似排序以及近似直方图和分位数计算的算法。这些算法占用有限的内存使用量,通常比精确计算要快得多。对于精度要求比速度更重要的场景,Druid还提供了精确count-distinct和精确排序。 10:摄取时自动汇总聚合,Druid支持在数据摄取阶段可选地进行数据汇总,这种汇总会部分预先聚合您的数据,并可以节省大量成本并提高性能。
什么场景下应该使用Druid
1:数据插入频率比较高,但较少更新数据 2:大多数查询场景为聚合查询和分组查询(GroupBy),同时还有一定得检索与扫描查询 3:将数据查询延迟目标定位100毫秒到几秒钟之间 4:数据具有时间属性(Druid针对时间做了优化和设计) 5:在多表场景下,每次查询仅命中一个大的分布式表,查询又可能命中多个较小的lookup表 6:场景中包含高基维度数据列(例如URL,用户ID等),并且需要对其进行快速计数和排序 7:需要从Kafka、HDFS、对象存储(如Amazon S3)中加载数据
Apache Druid架构
如上图,这是官网Apache Druid的架构图:
1.Historicale:加载已生成好的数据文件,以供数据查询。 2.Broker:对外提供数据查询服务。 3.Coordinator:负责Historical Node的数据负载均衡,以及通过Rule管理数据生命周期。 4.元数据库(metastore):存储druid集群的元数据信息,如Segment的相关信息,一般使用MySQL或PostgreSQL 5.分布式协调服务(Coordination):为Druid集群提供一致性服务,通常为zookeeper 6.数据文件存储(DeepStorage):存储生成的Segment文件,供Historical Node下载,一般为使用HDFS2. 安装
安装包下载地址:http://druid.apache.org/downloads.html
将安装包上传至服务器并解压。然后进入目录中进行相关 *** 作。
我们这里为了方便 *** 作,启动单机版即可,但单机版启动会自动加载Zookeeper,集群版可以自由配置Zookeeper外部节点,但单机版不行。由于我这边Kafka也用到了Zookeeper,为了让2个Zookeeper不冲突,我需要将要安装的Apache Druid的Zookeeper端口换掉,把2181换成3181,在apache-druid-0.20.0目录下执行如下2行命令即可:
sed -i "s/2181/3181/g" `grep 2181 -rl ./` sed -i "s/druid.zk.service.host=localhost/druid.zk.service.host=localhost:3181/g" `grep druid.zk.service.host=localhost -rl ./`
说明:sed -i "s/原字符串/新字符串/g" grep 原字符串 -rl 所在目录
Druid的时区和国内时区不一致,会比我们的少8个小时,我们需要修改配置文件,批量将时间+8,代码如下:
sed -i "s/Duser.timezone=UTC/Duser.timezone=UTC+8/g" `grep Duser.timezone=UTC -rl ./`
接下来进入到/usr/local/apache-druid-0.20.0/bin目录下启动Apache Druid即可:
./start-micro-quickstart
启动后,等待20秒我们可以访问Apache Druid的控制台http://192.168.100.130:8888/效果如下:
注意:
如果需要后台运行,可以直接执行./start-micro-quickstart &
服务器防火墙需要打开对应端口
Coordinator 8081 Historical8083 Broker8082 Realtime8084 Overlord8090 MiddleManager8091 Router8888
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)