Spring Data是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷,并支持map-reduce框架和云计算数据服务。 Spring Data可以极大的简化JPA(Elasticsearch…)的写法,可以在几乎不用写实现的情况下,实现对数据的访问和 *** 作。除了CRUD外,还包括如分页、排序等一些常用的功能。
Spring Data的官网:Spring Data
Spring Data常用的功能模块如下:
1.2 Spring Data Elasticsearch介绍Spring Data Elasticsearch 基于 spring data API 简化 Elasticsearch *** 作,将原始 *** 作Elasticsearch的客户端API 进行封装 。Spring Data为Elasticsearch项目提供集成搜索引擎。Spring Data Elasticsearch POJO的关键功能区域为中心的模型与Elastichsearch交互文档和轻松地编写一个存储索引库数据访问层。
官方网站: Spring Data Elasticsearch
1.3 Spring Data Elasticsearch版本对比目前最新springboot对应Elasticsearch7.6.2,Spring boot2.3.x一般可以兼容Elasticsearch7.x
1.4 框架集成1. 创建Maven项目
2. 修改pom文件,增加依赖关系
4.0.0 org.springframework.boot spring-boot-starter-parent2.3.6.RELEASE com.atguigu.es springdata-elasticsearch1.0 8 8 org.projectlombok lombok org.springframework.boot spring-boot-starter-data-elasticsearchorg.springframework.boot spring-boot-devtoolsruntime true org.springframework.boot spring-boot-starter-testtest org.springframework.boot spring-boot-testjunit junitorg.springframework spring-test
3. 增加配置文件
在resources目录中增加application.properties文件
# es服务地址 elasticsearch.host=127.0.0.1 # es服务端口 elasticsearch.port=9200 # 配置日志级别,开启debug日志 logging.level.com.atguigu.es=debug
4. SpringBoot主程序
package com.atguigu.es; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; @SpringBootApplication public class SpringDataElasticSearchMainApplication { public static void main(String[] args) { SpringApplication.run(SpringDataElasticSearchMainApplication.class,args); } }
5. 数据实体类
package com.atguigu.es; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import lombok.ToString; @Data @NoArgsConstructor @AllArgsConstructor @ToString public class Product { private Long id;//商品唯一标识 private String title;//商品名称 private String category;//分类名称 private Double price;//商品价格 private String images;//图片地址 }
6. 配置类
l ElasticsearchRestTemplate是spring-data-elasticsearch项目中的一个类,和其他spring项目中的template类似。
l 在新版的spring-data-elasticsearch中,ElasticsearchRestTemplate代替了原来的ElasticsearchTemplate。
l 原因是ElasticsearchTemplate基于TransportClient,TransportClient即将在8.x以后的版本中移除。所以,我们推荐使用ElasticsearchRestTemplate。
l ElasticsearchRestTemplate基于RestHighLevelClient客户端的。需要自定义配置类,继承AbstractElasticsearchConfiguration,并实现elasticsearchClient()抽象方法,创建RestHighLevelClient对象。
package com.atguigu.es; import lombok.Data; import org.apache.http.HttpHost; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.RestClientBuilder; import org.elasticsearch.client.RestHighLevelClient; import org.springframework.boot.context.properties.ConfigurationProperties; import org.springframework.context.annotation.Configuration; import org.springframework.data.elasticsearch.config.AbstractElasticsearchConfiguration; @ConfigurationProperties(prefix = "elasticsearch") @Configuration @Data public class ElasticsearchConfig extends AbstractElasticsearchConfiguration { private String host ; private Integer port ; //重写父类方法 @Override public RestHighLevelClient elasticsearchClient() { RestClientBuilder builder = RestClient.builder(new HttpHost(host, port)); RestHighLevelClient restHighLevelClient = new RestHighLevelClient(builder); return restHighLevelClient; } }
7. DAO数据访问对象
package com.atguigu.es; import org.springframework.data.elasticsearch.repository.ElasticsearchRepository; import org.springframework.stereotype.Repository; @Repository public interface ProductDao extends ElasticsearchRepository{ }
8. 实体类映射 *** 作
package com.atguigu.es; import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor; import lombok.ToString; import org.springframework.data.annotation.Id; import org.springframework.data.elasticsearch.annotations.document; import org.springframework.data.elasticsearch.annotations.Field; import org.springframework.data.elasticsearch.annotations.FieldType; @Data @NoArgsConstructor @AllArgsConstructor @ToString @document(indexName = "shopping", shards = 3, replicas = 1) public class Product { //必须有id,这里的id是全局唯一的标识,等同于es中的"_id" @Id private Long id;//商品唯一标识 @Field(type = FieldType.Text, analyzer = "ik_max_word") private String title;//商品名称 @Field(type = FieldType.Keyword) private String category;//分类名称 @Field(type = FieldType.Double) private Double price;//商品价格 @Field(type = FieldType.Keyword, index = false) private String images;//图片地址 }
9. 索引 *** 作
package com.atguigu.es; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate; import org.springframework.test.context.junit4.SpringRunner; @RunWith(SpringRunner.class) @SpringBootTest public class SpringDataESIndexTest { //注入ElasticsearchRestTemplate @Autowired private ElasticsearchRestTemplate elasticsearchRestTemplate; //创建索引并增加映射配置 @Test public void createIndex(){ //创建索引,系统初始化会自动创建索引 System.out.println("创建索引"); } @Test public void deleteIndex(){ //创建索引,系统初始化会自动创建索引 boolean flg = elasticsearchRestTemplate.deleteIndex(Product.class); System.out.println("删除索引 = " + flg); } }
10. 文档 *** 作
package com.atguigu.es; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.data.domain.Page; import org.springframework.data.domain.PageRequest; import org.springframework.data.domain.Sort; import org.springframework.test.context.junit4.SpringRunner; import java.util.ArrayList; import java.util.List; @RunWith(SpringRunner.class) @SpringBootTest public class SpringDataESProductDaoTest { @Autowired private ProductDao productDao; @Test public void save(){ Product product = new Product(); product.setId(2L); product.setTitle("华为手机"); product.setCategory("手机"); product.setPrice(2999.0); product.setImages("http://www.atguigu/hw.jpg"); productDao.save(product); } //修改 @Test public void update(){ Product product = new Product(); product.setId(1L); product.setTitle("小米2手机"); product.setCategory("手机"); product.setPrice(9999.0); product.setImages("http://www.atguigu/xm.jpg"); productDao.save(product); } //根据id查询 @Test public void findById(){ Product product = productDao.findById(1L).get(); System.out.println(product); } //查询所有 @Test public void findAll(){ Iterableproducts = productDao.findAll(); for (Product product : products) { System.out.println(product); } } //删除 @Test public void delete(){ Product product = new Product(); product.setId(1L); productDao.delete(product); } //批量新增 @Test public void saveAll(){ List productList = new ArrayList<>(); for (int i = 0; i < 10; i++) { Product product = new Product(); product.setId(Long.valueOf(i)); product.setTitle("["+i+"]小米手机"); product.setCategory("手机"); product.setPrice(1999.0+i); product.setImages("http://www.atguigu/xm.jpg"); productList.add(product); } productDao.saveAll(productList); } //分页查询 @Test public void findByPageable(){ //设置排序(排序方式,正序还是倒序,排序的id) Sort sort = Sort.by(Sort.Direction.DESC,"id"); int currentPage=0;//当前页,第一页从0开始,1表示第二页 int pageSize = 5;//每页显示多少条 //设置查询分页 PageRequest pageRequest = PageRequest.of(currentPage, pageSize,sort); //分页查询 Page productPage = productDao.findAll(pageRequest); for (Product Product : productPage.getContent()) { System.out.println(Product); } } }
11. 文档搜索
package com.atguigu.es; import org.elasticsearch.index.query.QueryBuilders; import org.elasticsearch.index.query.TermQueryBuilder; import org.junit.Test; import org.junit.runner.RunWith; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.data.domain.PageRequest; import org.springframework.test.context.junit4.SpringRunner; @RunWith(SpringRunner.class) @SpringBootTest public class SpringDataESSearchTest { @Autowired private ProductDao productDao; @Test public void termQuery(){ TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米"); Iterable二、Spark Streaming框架集成 2.1 Spark Streaming框架介绍products = productDao.search(termQueryBuilder); for (Product product : products) { System.out.println(product); } } @Test public void termQueryByPage(){ int currentPage= 0 ; int pageSize = 5; //设置查询分页 PageRequest pageRequest = PageRequest.of(currentPage, pageSize); TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米"); Iterable products = productDao.search(termQueryBuilder,pageRequest); for (Product product : products) { System.out.println(product); } } }
Spark Streaming是Spark core API的扩展,支持实时数据流的处理,并且具有可扩展,高吞吐量,容错的特点。 数据可以从许多来源获取,如Kafka,Flume,Kinesis或TCP sockets,并且可以使用复杂的算法进行处理,这些算法使用诸如map,reduce,join和window等高级函数表示。 最后,处理后的数据可以推送到文件系统,数据库等。 实际上,您可以将Spark的机器学习和图形处理算法应用于数据流。
2.2 框架集成1.创建Maven项目
2. 修改pom文件,增加依赖关系
4.0.0 com.atguigu.es sparkstreaming-elasticsearch1.0 8 8 org.apache.spark spark-core_2.123.0.0 org.apache.spark spark-streaming_2.123.0.0 org.elasticsearch elasticsearch7.8.0 org.elasticsearch.client elasticsearch-rest-high-level-client7.8.0 org.apache.logging.log4j log4j-api2.8.2 org.apache.logging.log4j log4j-core2.8.2
3. 功能实现
package com.atguigu.es import org.apache.http.HttpHost import org.apache.spark.SparkConf import org.apache.spark.streaming.dstream.ReceiverInputDStream import org.apache.spark.streaming.{Seconds, StreamingContext} import org.elasticsearch.action.index.IndexRequest import org.elasticsearch.client.indices.CreateIndexRequest import org.elasticsearch.client.{RequestOptions, RestClient, RestHighLevelClient} import org.elasticsearch.common.xcontent.XContentType import java.util.Date object SparkStreamingESTest { def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setMaster("local[*]").setAppName("ESTest") val ssc = new StreamingContext(sparkConf, Seconds(3)) val ds: ReceiverInputDStream[String] = ssc.socketTextStream("localhost", 9999) ds.foreachRDD( rdd => { println("******* " + new Date()) rdd.foreach( data => { val client = new RestHighLevelClient( RestClient.builder(new HttpHost("localhost", 9200, "http")) ); // 新增文档 - 请求对象 val request = new IndexRequest(); // 设置索引及唯一性标识 val ss = data.split(" ") println("ss = " + ss.mkString(",")) request.index("sparkstreaming").id(ss(0)); val productJson = s""" | { "data":"${ss(1)}" } |""".stripMargin; // 添加文档数据,数据格式为JSON格式 request.source(productJson,XContentType.JSON); // 客户端发送请求,获取响应对象 val response = client.index(request, RequestOptions.DEFAULT); System.out.println("_index:" + response.getIndex()); System.out.println("_id:" + response.getId()); System.out.println("_result:" + response.getResult()); client.close() } ) } ) ssc.start() ssc.awaitTermination() } }三、Flink框架集成 3.1 Flink框架介绍
Apache Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。
Apache Spark掀开了内存计算的先河,以内存作为赌注,赢得了内存计算的飞速发展。但是在其火热的同时,开发人员发现,在Spark中,计算框架普遍存在的缺点和不足依然没有完全解决,而这些问题随着5G时代的来临以及决策者对实时数据分析结果的迫切需要而凸显的更加明显:
l 数据精准一次性处理(Exactly-Once)
l 乱序数据,迟到数据
l 低延迟,高吞吐,准确性
l 容错性
Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。在Spark火热的同时,也默默地发展自己,并尝试着解决其他计算框架的问题。
慢慢地,随着这些问题的解决,Flink慢慢被绝大数程序员所熟知并进行大力推广,阿里公司在2015年改进Flink,并创建了内部分支Blink,目前服务于阿里集团内部搜索、推荐、广告和蚂蚁等大量核心实时业务。
3.2 框架集成1. 创建Maven项目
2. 修改pom文件,增加相关依赖类库
4.0.0 com.atguigu.es flink-elasticsearch1.0 8 8 org.apache.flink flink-scala_2.121.12.0 org.apache.flink flink-streaming-scala_2.121.12.0 org.apache.flink flink-clients_2.121.12.0 org.apache.flink flink-connector-elasticsearch7_2.111.12.0 com.fasterxml.jackson.core jackson-core2.11.1
3. 功能实现
package com.atguigu.es; import org.apache.flink.api.common.functions.RuntimeContext; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction; import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer; import org.apache.flink.streaming.connectors.elasticsearch7.ElasticsearchSink; import org.apache.http.HttpHost; import org.elasticsearch.action.index.IndexRequest; import org.elasticsearch.client.Requests; import java.util.ArrayList; import java.util.HashMap; import java.util.List; import java.util.Map; public class FlinkElasticsearchSinkTest { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStreamSourcesource = env.socketTextStream("localhost", 9999); List httpHosts = new ArrayList<>(); httpHosts.add(new HttpHost("127.0.0.1", 9200, "http")); //httpHosts.add(new HttpHost("10.2.3.1", 9200, "http")); // use a ElasticsearchSink.Builder to create an ElasticsearchSink ElasticsearchSink.Builder esSinkBuilder = new ElasticsearchSink.Builder<>( httpHosts, new ElasticsearchSinkFunction () { public IndexRequest createIndexRequest(String element) { Map json = new HashMap<>(); json.put("data", element); return Requests.indexRequest() .index("my-index") //.type("my-type") .source(json); } @Override public void process(String element, RuntimeContext ctx, RequestIndexer indexer) { indexer.add(createIndexRequest(element)); } } ); // configuration for the bulk requests; this instructs the sink to emit after every element, otherwise they would be buffered esSinkBuilder.setBulkFlushMaxActions(1); // provide a RestClientFactory for custom configuration on the internally created REST client // esSinkBuilder.setRestClientFactory( // restClientBuilder -> { // restClientBuilder.setDefaultHeaders(...) // restClientBuilder.setMaxRetryTimeoutMillis(...) // restClientBuilder.setPathPrefix(...) // restClientBuilder.setHttpClientConfigCallback(...) // } // ); source.addSink(esSinkBuilder.build()); env.execute("flink-es"); } }
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)