【YOLOX训练部署】YOLOX训练自己的VOC数据集_乐亦亦乐的博客-CSDN博客
将自己训练的YOLOX权重转化成onNX 并进行推理【YOLOX训练部署】将自己训练的YOLOX权重转化成onNX 并进行推理_乐亦亦乐的博客-CSDN博客
onNX 在 CPU 上推理速度较慢,对比GPU效果,使用GPU对onnx进行推理。具体 *** 作:
首先卸载onnxruntime,并安装onnxruntime-gpu
pip uninstall onnxruntime
pip install onnxruntime-gpu
还是使用【YOLOX训练部署】将自己训练的YOLOX权重转化成onNX 并进行推理_乐亦亦乐的博客-CSDN博客
中的onnx_inference_video.py 进行推理。
运行:
python onnx_inference_video.py -m /media/liqiang/新加卷/YOLOX/my_yolox_s.onnx -i ./4.mp4 -o /media/liqiang/新加卷/YOLOX -s 0.3 --input_shape 640,640
会出现如下问题:
解决:修改代码
session = onnxruntime.InferenceSession( args.model, providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'])
完整推理代码:
''' Descripttion: version: Author: LiQiang Date: 2022-01-01 09:39:19 LastEditTime: 2022-01-01 10:23:07 ''' #!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import argparse import os import cv2 import numpy as np import onnxruntime from yolox.data.data_augment import preproc as preprocess # from yolox.data.datasets import COCO_CLASSES from yolox.data.datasets import VOC_CLASSES from yolox.utils import mkdir, multiclass_nms, demo_postprocess, vis def make_parser(): parser = argparse.ArgumentParser("onnxruntime inference sample") parser.add_argument( "-m", "--model", type=str, default="yolox.onnx", help="Input your onnx model.", ) parser.add_argument( "-i", "--video_path", type=str, # default='test_image.png', help="Path to your input image.", ) parser.add_argument( "-o", "--output_dir", type=str, default='demo_output', help="Path to your output directory.", ) parser.add_argument( "-s", "--score_thr", type=float, default=0.3, help="Score threshould to filter the result.", ) parser.add_argument( "--input_shape", type=str, default="640,640", help="Specify an input shape for inference.", ) parser.add_argument( "--with_p6", action="store_true", help="Whether your model uses p6 in FPN/PAN.", ) return parser if __name__ == '__main__': args = make_parser().parse_args() input_shape = tuple(map(int, args.input_shape.split(','))) # origin_img = cv2.imread(args.image_path) session = onnxruntime.InferenceSession( args.model, providers=['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']) cap = cv2.VideoCapture(args.video_path) while True: ret, origin_img = cap.read() img, ratio = preprocess(origin_img, input_shape) ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} output = session.run(None, ort_inputs) predictions = demo_postprocess(output[0], input_shape, p6=args.with_p6)[0] boxes = predictions[:, :4] scores = predictions[:, 4:5] * predictions[:, 5:] boxes_xyxy = np.ones_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2. boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2. boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2. boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2. boxes_xyxy /= ratio dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) if dets is not None: final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds, conf=args.score_thr, class_names=VOC_CLASSES) cv2.imshow('result', origin_img) c = cv2.waitKey(1) if c == 27: break # mkdir(args.output_dir) # output_path = os.path.join(args.output_dir, args.image_path.split("/")[-1]) # cv2.imwrite(output_path, origin_img)
重新运行:
python onnx_inference_video.py -m /media/liqiang/新加卷/YOLOX/my_yolox_s.onnx -i ./4.mp4 -o /media/liqiang/新加卷/YOLOX -s 0.3 --input_shape 640,640
可以看出速度明显提升!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)