Args.seed 数字并不代表产生随机数的多少,比如等于2,并不代表产生第三个随机数的时候会和第一个一样,所以args.seed可以只看做一个编号,只有编号没有变,那么执行一次,就会产生和之前一样的随机数。
import torch import numpy as np if __name__ == '__main__': # Example of target with class indices np.random.seed(2) torch.manual_seed(3) a = np.random.randn(3,3) b = np.random.randn(3,3) A = torch.randn(3, 3) B = torch.randn(3, 3) print(f'a and b are {a} {b}') print(f'A and B are {A} {B}') np.random.seed(2) torch.manual_seed(3) c = np.random.randn(3, 3) d = np.random.randn(3, 3) C = torch.randn(3, 3) D = torch.randn(3, 3) print(f'c and d are {c} {d}') print(f'C and D are {C} {D}') np.random.seed(2) torch.manual_seed(3) e = np.random.randn(3, 3) f = np.random.randn(3, 3) g = np.random.randn(3, 3) E = torch.randn(3, 3) F = torch.randn(3, 3) G = torch.randn(3, 3) print(f'e,f and g are {e} {f} {g}') print(f'E,F and G are {E} {F} {G}')
结果输出如下:
a and b are [[-0.41675785 -0.05626683 -2.1361961 ] [ 1.64027081 -1.79343559 -0.84174737] [ 0.50288142 -1.24528809 -1.05795222]] [[-0.90900761 0.55145404 2.29220801] [ 0.04153939 -1.11792545 0.53905832] [-0.5961597 -0.0191305 1.17500122]] A and B are tensor([[ 0.8033, 0.1748, 0.0890], [-0.6137, 0.0462, -1.3683], [ 0.3375, 1.0111, -1.4352]]) tensor([[ 0.9774, 0.5220, 1.2379], [-0.8646, 0.2990, 0.4192], [-0.0799, 0.9264, 0.8157]]) c and d are [[-0.41675785 -0.05626683 -2.1361961 ] [ 1.64027081 -1.79343559 -0.84174737] [ 0.50288142 -1.24528809 -1.05795222]] [[-0.90900761 0.55145404 2.29220801] [ 0.04153939 -1.11792545 0.53905832] [-0.5961597 -0.0191305 1.17500122]] C and D are tensor([[ 0.8033, 0.1748, 0.0890], [-0.6137, 0.0462, -1.3683], [ 0.3375, 1.0111, -1.4352]]) tensor([[ 0.9774, 0.5220, 1.2379], [-0.8646, 0.2990, 0.4192], [-0.0799, 0.9264, 0.8157]]) e,f and g are [[-0.41675785 -0.05626683 -2.1361961 ] [ 1.64027081 -1.79343559 -0.84174737] [ 0.50288142 -1.24528809 -1.05795222]] [[-0.90900761 0.55145404 2.29220801] [ 0.04153939 -1.11792545 0.53905832] [-0.5961597 -0.0191305 1.17500122]] [[-0.74787095 0.00902525 -0.87810789] [-0.15643417 0.25657045 -0.98877905] [-0.33882197 -0.23618403 -0.63765501]] E,F and G are tensor([[ 0.8033, 0.1748, 0.0890], [-0.6137, 0.0462, -1.3683], [ 0.3375, 1.0111, -1.4352]]) tensor([[ 0.9774, 0.5220, 1.2379], [-0.8646, 0.2990, 0.4192], [-0.0799, 0.9264, 0.8157]]) tensor([[ 0.4952, -0.1643, -0.6780], [-1.0591, 0.7477, 0.2389], [-0.3922, 0.1519, -1.1837]])
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)