spring事务开启和使用比较简单,需要有数据源和事务管理器,然后在启动门面类上开启事务,在需要使用事务的地方添加注解就可以了,我们简单做一下回顾。
1.配置数据源spring.datasource.driverClassName=com.mysql.jdbc.Driver spring.datasource.url=jdbc:mysql://host:3306/test?useUnicode=true&characterEncoding=utf8&autoReconnect=true&useSSL=true spring.datasource.username=aaa spring.datasource.password=bbb2.开启事务能力
@SpringBootApplication(exclude = {DataSourceAutoConfiguration.class},scanbasePackages = "xxx") @EnableTransactionManagement public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } }3.使用事务
@Transactional public void evaluateSatisfaction(Req req) { //do business }
这样我们就可以在业务中使用事务了。
那么我们就要思考一个问题,为什么通过简单的配置和两个注解我们就能便捷的使用事务了,spring框架层面做了哪些能力支撑,接下来我们将从原理和源码维度对spring的事务原理进行分析。
二、原理分析首先,spring事务管理之所以能生效,得有数据库吧,得有数据源吧,得有事务管理器吧,我们先看一下spring对于数据源和事务管理器的处理和配置。
1.数据源与事务管理器先看一个配置类DataSourceConfiguration:
abstract class DataSourceConfiguration { @ConditionalOnMissingBean(DataSource.class) @ConditionalOnProperty(name = "spring.datasource.type") static class Generic { @Bean public DataSource dataSource(DataSourceProperties properties) { return properties.initializeDataSourceBuilder().build(); } } }
省略掉的是Tomcat、Hikari、DBCP数据源配置,国内使用率最高的Druid数据源通过spring.datasource.type指定类型并且自定义配置,然后使用DataSourceProperties和DataSourceBuilder构造。
然后我们看另外一个配置类DataSourceAutoConfiguration:
@Configuration @ConditionalOnClass({ DataSource.class, EmbeddedDatabaseType.class }) @EnableConfigurationProperties(DataSourceProperties.class) @import({ DataSourcePoolmetadataProvidersConfiguration.class, DataSourceInitializationConfiguration.class }) public class DataSourceAutoConfiguration { //...省略 @Configuration @Conditional(PooledDataSourceCondition.class) @ConditionalOnMissingBean({ DataSource.class, XADataSource.class }) @import({ DataSourceConfiguration.Hikari.class, DataSourceConfiguration.Tomcat.class, DataSourceConfiguration.Dbcp2.class, DataSourceConfiguration.Generic.class, DataSourceJmxConfiguration.class }) protected static class PooledDataSourceConfiguration { } }
此处PooledDataSourceConfiguration通过@import注解导入了支持的数据源配置,应用启动时ConfigurationClassPostProcessor会将@Configuration扫描并根据配置数据源类型注册BeanDefinition供后续实例化,这里我们暂且理解为DataSource已经配置好了。
再看另外一个配置类DataSourceTransactionManagerAutoConfiguration:
@Configuration @ConditionalOnClass({ JdbcTemplate.class, PlatformTransactionManager.class }) @AutoConfigureOrder(Ordered.LOWEST_PRECEDENCE) @EnableConfigurationProperties(DataSourceProperties.class) public class DataSourceTransactionManagerAutoConfiguration { @Configuration @ConditionalOnSingleCandidate(DataSource.class) static class DataSourceTransactionManagerConfiguration { private final DataSource dataSource; private final TransactionManagerCustomizers transactionManagerCustomizers; DataSourceTransactionManagerConfiguration(DataSource dataSource, ObjectProvidertransactionManagerCustomizers) { this.dataSource = dataSource; this.transactionManagerCustomizers = transactionManagerCustomizers .getIfAvailable(); } @Bean @ConditionalOnMissingBean(PlatformTransactionManager.class) public DataSourceTransactionManager transactionManager( DataSourceProperties properties) { DataSourceTransactionManager transactionManager = new DataSourceTransactionManager( this.dataSource); if (this.transactionManagerCustomizers != null) { this.transactionManagerCustomizers.customize(transactionManager); } return transactionManager; } } }
该类是数据源事务管理配置类,根据前边的数据源创建事务管理器DataSourceTransactionManager,从继承关系可以看出它是一个PlatformTransactionManager(后边会用到此概念):
spring的事务管理也就是使用事务管理器通过数据源和连接来实现开启、提交和回滚 *** 作。
通过@EnableTransactionManagement来开启spring事务能力:
@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME) @documented @import(TransactionManagementConfigurationSelector.class) public @interface EnableTransactionManagement { boolean proxyTargetClass() default false; AdviceMode mode() default AdviceMode.PROXY; int order() default Ordered.LOWEST_PRECEDENCE; }
注解有三个属性
- proxyTargetClass:true表示基于CGLIB创建代理,false表示使用jdk动态代理。默认值为false。仅当mode()设置为AdviceMode时适用。
- mode:表示事务通知实现方式,proxy表示通过代理的当时拦截处理事务,同类级别的方法调用将无法拦截;ASPECTJ表示使用aspectj织入的方式拦截处理事务,功能比proxy模式强大。
- order:在调用链中有多个通知,事务通知的执行优先级,默认最低。
@EnableTransactionManagement开启的能力委托给TransactionManagementConfigurationSelector来实现:
public class TransactionManagementConfigurationSelector extends AdviceModeimportSelector{ @Override protected String[] selectimports(AdviceMode adviceMode) { switch (adviceMode) { case PROXY: return new String[] {AutoProxyRegistrar.class.getName(), ProxyTransactionManagementConfiguration.class.getName()}; case ASPECTJ: return new String[] {determineTransactionAspectClass()}; default: return null; } } private String determineTransactionAspectClass() { return (ClassUtils.isPresent("javax.transaction.Transactional", getClass().getClassLoader()) ? TransactionManagementConfigUtils.JTA_TRANSACTION_ASPECT_CONFIGURATION_CLASS_NAME : TransactionManagementConfigUtils.TRANSACTION_ASPECT_CONFIGURATION_CLASS_NAME); } }
它是一个importSelector,ConfigurationClassPostProcessor会将其初始化并将selectimports返回的类列注册BeanDefinition然后实例化(可参考《ConfigurationClassPostProcessor原理详解》),父类AdviceModeimportSelector的selectimports方法解析EnableTransactionManagement注解属性,然后调用子类selectimports方法返回导入类列表,我们的分析针对mode=proxy展开,可以看到TransactionManagementConfigurationSelector导入了两个类,AutoProxyRegistrar和ProxyTransactionManagementConfiguration,逐个分析一下,先看AutoProxyRegistrar:
它是一个importBeanDefinitionRegistrar,实例化后被调用其registerBeanDefinitions方法:
@Override public void registerBeanDefinitions(Annotationmetadata importingClassmetadata, BeanDefinitionRegistry registry) { boolean candidateFound = false; SetannoTypes = importingClassmetadata.getAnnotationTypes(); for (String annoType : annoTypes) { AnnotationAttributes candidate = AnnotationConfigUtils.attributesFor(importingClassmetadata, annoType); if (candidate == null) { continue; } Object mode = candidate.get("mode"); Object proxyTargetClass = candidate.get("proxyTargetClass"); if (mode != null && proxyTargetClass != null && AdviceMode.class == mode.getClass() && Boolean.class == proxyTargetClass.getClass()) { candidateFound = true; if (mode == AdviceMode.PROXY) { AopConfigUtils.registerAutoProxyCreatorIfNecessary(registry); if ((Boolean) proxyTargetClass) { AopConfigUtils.forceAutoProxyCreatorToUseClassProxying(registry); return; } } } } }
会调用AopConfigUtils注册一个类InfrastructureAdvisorAutoProxyCreator,并且需要注意的是,如果有多次调用,只要有任一次proxyTargetClass为true,就会把其该属性设置为true,影响是全局,比如应用中同时开启了事务和异步能力,如果@EnableAsync把proxyTargetClass设置为true那么也会影响到事务以及其他aop能力。
@Nullable public static BeanDefinition registerAutoProxyCreatorIfNecessary( BeanDefinitionRegistry registry, @Nullable Object source) { return registerOrEscalateApcAsRequired(InfrastructureAdvisorAutoProxyCreator.class, registry, source); }
这个类非常重要,是实现代理和AOP能力的核心组件,拥有处理代理逻辑的能力,本质上又是一个BeanPostProcessor,他的实现比较简单,核心逻辑在其父类AbstractAdvisorAutoProxyCreator和AbstractAutoProxyCreator中,父类实现了InstantiationAwareBeanPostProcessor接口,其postProcessBeforeInstantiation方法会在bean初始化之前调用,如果返回不为null,那么就不在执行bean的初始化,框架设计的目的就是给出扩展能力来做一些代理和bean实例化短路的事情。从spring事务场景来说,就是对使用了事务的类做代理实现,加入事务能力。
那么我们就看一下AbstractAutoProxyCreator的postProcessBeforeInstantiation实现:
@Override public Object postProcessBeforeInstantiation(Class> beanClass, String beanName) { Object cacheKey = getCacheKey(beanClass, beanName); //...省略 // Create proxy here if we have a custom TargetSource. // Suppresses unnecessary default instantiation of the target bean: // The TargetSource will handle target instances in a custom fashion. TargetSource targetSource = getCustomTargetSource(beanClass, beanName); if (targetSource != null) { if (StringUtils.hasLength(beanName)) { this.targetSourcedBeans.add(beanName); } Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(beanClass, beanName, targetSource); Object proxy = createProxy(beanClass, beanName, specificInterceptors, targetSource); this.proxyTypes.put(cacheKey, proxy.getClass()); return proxy; } return null; }
先创建TargetSource,然后获取适用于当前bean的通知,然后创建代理并返回。因为TargetSource是spring框架的复杂代理,针对代理只能单个类代理做出的扩展,我们暂时没有用到该能力,所以此处targetSource为null,这里不会执行创建代理 *** 作。从AbstractAutoProxyCreator中看到重写BeanPostProcessor的一个方法postProcessAfterInitialization,这个方法的作用是目标bean实例化之后,初始化的时候可以对齐进行包装甚至替换掉,对于事务来说,可以用把事务能力包装进去,或者用具有事务能力的bean实例替换掉原来的,看一下实现:
@Override public Object postProcessAfterInitialization(@Nullable Object bean, String beanName) { if (bean != null) { Object cacheKey = getCacheKey(bean.getClass(), beanName); if (this.earlyProxyReferences.remove(cacheKey) != bean) { return wrapIfNecessary(bean, beanName, cacheKey); } } return bean; }
如果给定的bean有资格被代理,那么调用wrapIfNecessary包装并返回:
protected Object wrapIfNecessary(Object bean, String beanName, Object cacheKey) { //...省略 // Create proxy if we have advice. Object[] specificInterceptors = getAdvicesAndAdvisorsForBean(bean.getClass(), beanName, null); if (specificInterceptors != DO_NOT_PROXY) { this.advisedBeans.put(cacheKey, Boolean.TRUE); Object proxy = createProxy( bean.getClass(), beanName, specificInterceptors, new SingletonTargetSource(bean)); this.proxyTypes.put(cacheKey, proxy.getClass()); return proxy; } this.advisedBeans.put(cacheKey, Boolean.FALSE); return bean; }
获取bean使用的通知,然后创建代理,并将通知能力织入进去。因为获取适用当前bean的通知涉及到前边我们说的selectimports导入的另外一个配置类ProxyTransactionManagementConfiguration,所以我们这里只分析创建代理,获取通知和通知拦截逻辑后边分析。先看一下创建代理逻辑:
protected Object createProxy(Class> beanClass, @Nullable String beanName, @Nullable Object[] specificInterceptors, TargetSource targetSource) { ProxyFactory proxyFactory = new ProxyFactory(); proxyFactory.copyFrom(this); if (!proxyFactory.isProxyTargetClass()) { if (shouldProxyTargetClass(beanClass, beanName)) { proxyFactory.setProxyTargetClass(true); } else { evaluateProxyInterfaces(beanClass, proxyFactory); } } Advisor[] advisors = buildAdvisors(beanName, specificInterceptors); proxyFactory.addAdvisors(advisors); proxyFactory.setTargetSource(targetSource); customizeProxyFactory(proxyFactory); proxyFactory.setFrozen(this.freezeProxy); if (advisorsPreFiltered()) { proxyFactory.setPreFiltered(true); } return proxyFactory.getProxy(getProxyClassLoader()); }
先创建代理工厂,然后填充通知器、设置要代理的目标类,然后创建代理。
从代理工厂的继承关系可以看到其实现了Advised接口,并且拥有创建代理的能力,创建代理工厂的时候使用默认无参构造器,会调用父类ProxyCreatorSupport的无参构造器:
public ProxyCreatorSupport() { this.aopProxyFactory = new DefaultAopProxyFactory(); }
创建代理的任务会委托给DefaultAopProxyFactory执行,会先调用createAopProxy创建生成代理的工具:
@Override public AopProxy createAopProxy(AdvisedSupport config) throws AopConfigException { if (config.isOptimize() || config.isProxyTargetClass() || hasNoUserSuppliedProxyInterfaces(config)) { Class> targetClass = config.getTargetClass(); if (targetClass.isInterface() || Proxy.isProxyClass(targetClass)) { return new JdkDynamicAopProxy(config); } return new ObjenesisCglibAopProxy(config); } else { return new JdkDynamicAopProxy(config); } }
根据proxyTargetClass和接口特性决定使用jdk的动态代理JdkDynamicAopProxy还是cglib的动态代理ObjenesisCglibAopProxy。
两者都实现了AopProxy接口用于创建代理,jdk动态代理也实现了InvocationHandler接口,将其本身也定义成一个代理执行器,代理目标类逻辑执行的时候对调用其invoke方法。jdk动态代理的生成逻辑如下:
@Override public Object getProxy(@Nullable ClassLoader classLoader) { if (logger.isTraceEnabled()) { logger.trace("Creating JDK dynamic proxy: " + this.advised.getTargetSource()); } Class>[] proxiedInterfaces = AopProxyUtils.completeProxiedInterfaces(this.advised, true); findDefinedEqualsAndHashCodeMethods(proxiedInterfaces); return Proxy.newProxyInstance(classLoader, proxiedInterfaces, this); }
而cglib则根据目标类生成增强类,并嵌入拦截逻辑,本篇可以理解为把事务能力嵌入:
@Override public Object getProxy(@Nullable ClassLoader classLoader) { try { Class> rootClass = this.advised.getTargetClass(); Class> proxySuperClass = rootClass; if (ClassUtils.isCglibProxyClass(rootClass)) { proxySuperClass = rootClass.getSuperclass(); Class>[] additionalInterfaces = rootClass.getInterfaces(); for (Class> additionalInterface : additionalInterfaces) { this.advised.addInterface(additionalInterface); } } // Configure CGLIB Enhancer... Enhancer enhancer = createEnhancer(); if (classLoader != null) { enhancer.setClassLoader(classLoader); if (classLoader instanceof SmartClassLoader && ((SmartClassLoader) classLoader).isClassReloadable(proxySuperClass)) { enhancer.setUseCache(false); } } enhancer.setSuperclass(proxySuperClass); enhancer.setInterfaces(AopProxyUtils.completeProxiedInterfaces(this.advised)); enhancer.setNamingPolicy(SpringNamingPolicy.INSTANCE); enhancer.setStrategy(new ClassLoaderAwareUndeclaredThrowableStrategy(classLoader)); Callback[] callbacks = getCallbacks(rootClass); Class>[] types = new Class>[callbacks.length]; for (int x = 0; x < types.length; x++) { types[x] = callbacks[x].getClass(); } // fixedInterceptorMap only populated at this point, after getCallbacks call above enhancer.setCallbackFilter(new ProxyCallbackFilter( this.advised.getConfigurationOnlyCopy(), this.fixedInterceptorMap, this.fixedInterceptorOffset)); enhancer.setCallbackTypes(types); // Generate the proxy class and create a proxy instance. return createProxyClassAndInstance(enhancer, callbacks); } catch (CodeGenerationException | IllegalArgumentException ex) { throw new AopConfigException("Could not generate CGLIB subclass of " + this.advised.getTargetClass() + ": Common causes of this problem include using a final class or a non-visible class", ex); } catch (Throwable ex) { // TargetSource.getTarget() failed throw new AopConfigException("Unexpected AOP exception", ex); } }
两种代理方式的逻辑执行此处不做分析,后边执行事务能力的时候分析。
前边有提到生成代理的时候寻找合适的通知会用到另外一个配置类ProxyTransactionManagementConfiguration,我们也分析一下它做了什么事情。
@Configuration public class ProxyTransactionManagementConfiguration extends AbstractTransactionManagementConfiguration { @Bean(name = TransactionManagementConfigUtils.TRANSACTION_ADVISOR_BEAN_NAME) @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public BeanFactoryTransactionAttributeSourceAdvisor transactionAdvisor() { BeanFactoryTransactionAttributeSourceAdvisor advisor = new BeanFactoryTransactionAttributeSourceAdvisor(); advisor.setTransactionAttributeSource(transactionAttributeSource()); advisor.setAdvice(transactionInterceptor()); if (this.enableTx != null) { advisor.setOrder(this.enableTx.getNumber("order")); } return advisor; } @Bean @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public TransactionAttributeSource transactionAttributeSource() { return new AnnotationTransactionAttributeSource(); } @Bean @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public TransactionInterceptor transactionInterceptor() { TransactionInterceptor interceptor = new TransactionInterceptor(); interceptor.setTransactionAttributeSource(transactionAttributeSource()); if (this.txManager != null) { interceptor.setTransactionManager(this.txManager); } return interceptor; } }
它定义了事务属性、事务拦截器和事务通知器等三个bean,并且将事务管理器注入了进来(也可能此刻没有注入),这里重要的是BeanFactoryTransactionAttributeSourceAdvisor和TransactionInterceptor。
它是一个Advisor,持有切入点(TransactionAttributeSourcePointcut)、事务属性和拦截器。拦截逻辑由TransactionInterceptor实现。
结合前边生成代理的逻辑,我们可以初步猜测,根据通知器中的切入点是否匹配拦截类的方法,如果匹配则将拦截器逻辑嵌入到生成的代理类中。
我们看一下前边提到的创建代理之前,有调用getAdvicesAndAdvisorsForBean方法获取目标bean适用的通知,会调用子类AbstractAdvisorAutoProxyCreator的实现:
@Override @Nullable protected Object[] getAdvicesAndAdvisorsForBean( Class> beanClass, String beanName, @Nullable TargetSource targetSource) { List advisors = findEligibleAdvisors(beanClass, beanName); if (advisors.isEmpty()) { return DO_NOT_PROXY; } return advisors.toArray(); }
调用链比较长,省略中间步骤,最终调用到AopUtils的canApply方法来做过滤:
public static boolean canApply(Pointcut pc, Class> targetClass, boolean hasIntroductions) { if (!pc.getClassFilter().matches(targetClass)) { return false; } //...省略 Set> classes = new linkedHashSet<>(); classes.addAll(ClassUtils.getAllInterfacesForClassAsSet(targetClass)); for (Class> clazz : classes) { Method[] methods = ReflectionUtils.getAllDeclaredMethods(clazz); for (Method method : methods) { if (introductionAwareMethodMatcher != null ? introductionAwareMethodMatcher.matches(method, targetClass, hasIntroductions) : methodMatcher.matches(method, targetClass)) { return true; } } } return false; }
由于我们的通知器不是Introduction类型,然后会使用BeanFactoryTransactionAttributeSourceAdvisor持有的TransactionAttributeSourcePointcut来做过滤:
@Override public boolean matches(Method method, Class> targetClass) { if (TransactionalProxy.class.isAssignableFrom(targetClass) || PlatformTransactionManager.class.isAssignableFrom(targetClass) || PersistenceExceptionTranslator.class.isAssignableFrom(targetClass)) { return false; } TransactionAttributeSource tas = getTransactionAttributeSource(); return (tas == null || tas.getTransactionAttribute(method, targetClass) != null); }
然后委托给TransactionAttributeSource来提取目标方法和类是否具有事务标注,如果有@Transactional就认为适用,其实就是用通知器的Pointcut来和方法对比是否匹配适用。上述方法会调用到SpringTransactionAnnotationParser的方法:
@Override @Nullable public TransactionAttribute parseTransactionAnnotation(AnnotatedElement element) { AnnotationAttributes attributes = AnnotatedElementUtils.findMergedAnnotationAttributes( element, Transactional.class, false, false); if (attributes != null) { return parseTransactionAnnotation(attributes); } else { return null; } }
其实就是为了提取方法上是否有@Transactional注解。
先看一下寻找合适通知器的时序图:
InfrastructureAdvisorAutoProxyCreator处理器注册与实例化:
为使用事务的目标类生成代理的时序图如下:
根据前边的分析,基于@EnableTransactionManagement和@Transactional注解,应用启动后会将目标类生成代理,并将事务能力织入进去,生成代理的方式有两种,分别是jdk动态代理和cglib动态代理,由于编写事务逻辑的方法所属类大多不实现接口,所以对于事务,生成代理的方式是cglib。
cglib生成代理类的方式是继承目标类,重写目标方法,然后把拦截器逻辑嵌入进去,对于事务能力,会调用到TransactionInterceptor拦截器的invoke方法:
@Override @Nullable public Object invoke(MethodInvocation invocation) throws Throwable { // Work out the target class: may be {@code null}. // The TransactionAttributeSource should be passed the target class // as well as the method, which may be from an interface. Class> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null); // Adapt to TransactionAspectSupport's invokeWithinTransaction... return invokeWithinTransaction(invocation.getMethod(), targetClass, invocation::proceed); }
寻找到目标类,然后执行事务调用invokeWithinTransaction:
@Nullable protected Object invokeWithinTransaction(Method method, @Nullable Class> targetClass, final InvocationCallback invocation) throws Throwable { // If the transaction attribute is null, the method is non-transactional. TransactionAttributeSource tas = getTransactionAttributeSource(); final TransactionAttribute txAttr = (tas != null ? tas.getTransactionAttribute(method, targetClass) : null); final PlatformTransactionManager tm = determineTransactionManager(txAttr); final String joinpointIdentification = methodIdentification(method, targetClass, txAttr); if (txAttr == null || !(tm instanceof CallbackPreferringPlatformTransactionManager)) { // Standard transaction demarcation with getTransaction and commit/rollback calls. TransactionInfo txInfo = createTransactionIfNecessary(tm, txAttr, joinpointIdentification); Object retVal = null; try { // This is an around advice: Invoke the next interceptor in the chain. // This will normally result in a target object being invoked. retVal = invocation.proceedWithInvocation(); } catch (Throwable ex) { // target invocation exception completeTransactionAfterThrowing(txInfo, ex); throw ex; } finally { cleanupTransactionInfo(txInfo); } commitTransactionAfterReturning(txInfo); return retVal; } else { //...省略 } }
前边有说到,创建的事务管理器DataSourceTransactionManager是PlatformTransactionManager类型,txAttr是从方法上提取的事务注解属性,所以满足if分支,逻辑大概意思是如果需要,则创建事务,然后执行代理类的目标方法逻辑调用,然后如果有异常则做异常回滚并抛出,如果没有异常则提交事务。
先看一下创建事务createTransactionIfNecessary:
protected TransactionInfo createTransactionIfNecessary(@Nullable PlatformTransactionManager tm, @Nullable TransactionAttribute txAttr, final String joinpointIdentification) { //...省略 TransactionStatus status = null; if (txAttr != null) { if (tm != null) { status = tm.getTransaction(txAttr); } } return prepareTransactionInfo(tm, txAttr, joinpointIdentification, status); }
从事务管理器中获取事务状态,然后准备事务信息,获取事务状态使用DataSourceTransactionManager的父类重写方法getTransaction:
@Override public final TransactionStatus getTransaction(@Nullable TransactionDefinition definition) throws TransactionException { Object transaction = doGetTransaction(); if (isExistingTransaction(transaction)) { // Existing transaction found -> check propagation behavior to find out how to behave. return handleExistingTransaction(definition, transaction, debugEnabled); } // Check definition settings for new transaction. if (definition.getTimeout() < TransactionDefinition.TIMEOUT_DEFAULT) { throw new InvalidTimeoutException("Invalid transaction timeout", definition.getTimeout()); } // No existing transaction found -> check propagation behavior to find out how to proceed. if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_MANDATORY) { throw new IllegalTransactionStateException( "No existing transaction found for transaction marked with propagation 'mandatory'"); } else if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRED || definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW || definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) { SuspendedResourcesHolder suspendedResources = suspend(null); if (debugEnabled) { logger.debug("Creating new transaction with name [" + definition.getName() + "]: " + definition); } try { boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER); DefaultTransactionStatus status = newTransactionStatus( definition, transaction, true, newSynchronization, debugEnabled, suspendedResources); doBegin(transaction, definition); prepareSynchronization(status, definition); return status; } catch (RuntimeException | Error ex) { resume(null, suspendedResources); throw ex; } } else { // Create "empty" transaction: no actual transaction, but potentially synchronization. boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS); return prepareTransactionStatus(definition, null, true, newSynchronization, debugEnabled, null); } }
先检查当前线程调用是否处于事务中,如果是则处理线程传播并返回;然后检查事务超时属性,如果事务传播配置是PROPAGATION_MANDATORY且当前无事务,则报错返回;如果事务传播级别是PROPAGATION_REQUIRED、PROPAGATION_REQUIRES_NEW或PROPAGATION_NESTED则开启事务并返回事务状态。补充一下事务传播级别的概念:
- PROPAGATION_REQUIRED:_支持当前事务;如果不存在,则创建一个新的。默认配置
- PROPAGATION_SUPPORTS:_支持当前事务;如果不存在,则以非事务方式执行
- PROPAGATION_MANDATORY:_支持当前事务;如果当前不存在事务,则引发异常
- PROPAGATION_REQUIRES_NEW:_创建一个新事务,如果当前事务存在,则挂起当前事务
- PROPAGATION_NOT_SUPPORTED:_不支持当前事务;而是始终以非事务方式执行
- PROPAGATION_NEVER:_不支持事务;如果当前事务存在,则引发异常
- PROPAGATION_NESTED:_如果存在当前事务,则在嵌套事务中执行
我们看一下开启事务的实现:
@Override protected void doBegin(Object transaction, TransactionDefinition definition) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction; Connection con = null; try { if (!txObject.hasConnectionHolder() || txObject.getConnectionHolder().isSynchronizedWithTransaction()) { Connection newCon = obtainDataSource().getConnection(); txObject.setConnectionHolder(new ConnectionHolder(newCon), true); } txObject.getConnectionHolder().setSynchronizedWithTransaction(true); con = txObject.getConnectionHolder().getConnection(); Integer previousIsolationLevel = DataSourceUtils.prepareConnectionForTransaction(con, definition); txObject.setPreviousIsolationLevel(previousIsolationLevel); if (con.getAutoCommit()) { txObject.setMustRestoreAutoCommit(true); con.setAutoCommit(false); } prepareTransactionalConnection(con, definition); txObject.getConnectionHolder().setTransactionActive(true); int timeout = determineTimeout(definition); if (timeout != TransactionDefinition.TIMEOUT_DEFAULT) { txObject.getConnectionHolder().setTimeoutInSeconds(timeout); } if (txObject.isNewConnectionHolder()) { TransactionSynchronizationManager.bindResource(obtainDataSource(), txObject.getConnectionHolder()); } } catch (Throwable ex) { if (txObject.isNewConnectionHolder()) { DataSourceUtils.releaseConnection(con, obtainDataSource()); txObject.setConnectionHolder(null, false); } throw new CannotCreateTransactionException("Could not open JDBC Connection for transaction", ex); } }
如果没有数据库连接则先获取连接,然后将自动提交设置false,配置超时时间,然后把数据库连接绑定到线程上。
回到事务拦截器的invokeWithinTransaction方法,拿到事务信息后,执行业务逻辑,如果发生异常则调用执行回滚和后续逻辑,如果执行成功则提交事务。
看一下异常执行逻辑:
protected void completeTransactionAfterThrowing(@Nullable TransactionInfo txInfo, Throwable ex) { if (txInfo != null && txInfo.getTransactionStatus() != null) { if (txInfo.transactionAttribute != null && txInfo.transactionAttribute.rollbackOn(ex)) { try { txInfo.getTransactionManager().rollback(txInfo.getTransactionStatus()); } catch (TransactionSystemException ex2) { ex2.initApplicationException(ex); throw ex2; } catch (RuntimeException | Error ex2) { throw ex2; } } else { try { txInfo.getTransactionManager().commit(txInfo.getTransactionStatus()); } catch (TransactionSystemException ex2) { ex2.initApplicationException(ex); throw ex2; } catch (RuntimeException | Error ex2) { throw ex2; } } } }
如果存在事务,且异常类型符合回滚规则,那么调用事务管理器的回滚逻辑,否则执行提交。回滚最终会调用数据库连接的回滚方法:
protected void doRollback(DefaultTransactionStatus status) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) status.getTransaction(); Connection con = txObject.getConnectionHolder().getConnection(); try { con.rollback(); } catch (SQLException ex) { throw new TransactionSystemException("Could not roll back JDBC transaction", ex); } }
然后会调用后续的一些 *** 作,比如之前我们分析过的《TransactionalEventListener使用场景与原理分析》。
如果业务执行成功,那么执行事务提交,事务提交有事务管理器最终委托给数据库连接 *** 作,并且也会触发一些依赖事务执行状态的 *** 作,比如TransactionalEventListener依赖的是事务提交。
到这里事务的执行逻辑分析完了,我们看一下执行时序图:
spring事务能力的支撑用到了很多知识,动态代理、AOP、反射、后置处理器等等,总的来说就是应用启动时为需要使用事务的类生成代理类,以及将事务能力(拦截逻辑)织入进去,在实例化的时候调用后置处理器的逻辑,将代理类实例化替代目标类,并放入上下文容器中,在实际调用目标类事务方法的时候,被代理类中ReflectiveMethodInvocation拦截,然后先调用拦截器中的事务逻辑,然后再调用目标类的业务逻辑,最后处理异常回滚和提交,看起来比较简单,但是框架层面提供了非常庞大的基础组件来支撑和实现事务能力,当然这些基础组件大部分都会复用,比如AOP和动态代理,在异步和缓存场景下都会用到,包括我们自己扩展一些能力出来的时候也会用到。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)