spark例子

spark例子,第1张

spark例子 使用idea:
  • 使用idea创建maven项目

在Project Structture 中 添加 scala(环境一定要搭建好,不然运行不了)

  • 在pom.xml中添加(可以使用Alt+insert 然后选择Dependency添加需要的)依赖


    4.0.0

    org.example
    untitled
    1.0-SNAPSHOT
    
        
            org.apache.spark
            spark-core_2.11
            2.4.8
        
    

    
        8
        8
    


  • scala代码补全方法:https://blog.csdn.net/qq_44065303/article/details/108345728
案例一:
  • 统计单词(不区分大小写)

Word Count(词频数统计),就是统计一个或者多个文件中单词出现的次数。

import org.apache.spark.{SparkConf, SparkContext}
object word {
  def main(args:Array[String]): Unit ={
    val conf=new SparkConf().setMaster("local").setAppName("word")
    val sc=new SparkContext(conf)
    val t=sc.textFile("hdfs://localhost:9000/wordcount/word.txt")//文件在hdfs的path(路径)
    val t1=t.filter(_.trim.length>0).map(i=>i.toUpperCase())//除去空格,全部转换成大写
    val t2=t1.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_,1).sortBy(_._2,false).collect().foreach(println)//key不变的情况下,使value增加
    sc.stop()
  }
}

map参考:https://blog.csdn.net/xianpanjia4616/article/details/80947616

案例二:
  • 统计一个 100 万人口的所有人的平均年龄

需要用 Scala 写一个生成 100 万人口年龄数据的文件

 import java.io.FileWriter
 import java.io.File
 import scala.util.Random
 object  rry{
 def main(args:Array[String]) {
 val writer = new FileWriter(new File("/home/hadoop/data.txt"),false)//文件保存路径
 val rand = new Random()
 for ( i <- 1 to 1000000) {
 writer.write( i + " " + rand.nextInt(100))
 writer.write(System.getProperty("line.separator"))
	 }
	 writer.flush()
	 writer.close()
	 }
 }

数据上传到hdfs

打开终端
打开hadoop
cd /usr/local/hadoop//hadoop安装路径

./sbin/start-all.sh
//上传
./bin/hdfs dfs -put /home/hadoop/data.txt /wordcount(后面是hdfs上的目录)
  • 编程实现
import org.apache.spark.{SparkConf, SparkContext}
object scala1000{
  def main(args:Array[String]) {
    val conf = new SparkConf().setAppName("10000r").setMaster("local")
    val sc = new SparkContext(conf)
    val t = sc.textFile("file:///home/hadoop/data.txt")//也可以使用("hdfs://localhost:9000/wordcount/data.txt")
    val count = t.count()//记录人数
    val age = t.map(i => i.split(" ")(1)).map(j => j.trim.toInt).collect().reduce((a, b) => a + b)//trim是去除左右的空格toInt比转换成int类型
    val ct=age.toDouble/count.toDouble//平均年龄
    println(age+"  "+count+"   " +ct)
  }
}
案例三:
  • 人口 (1 万) 性别还有身高进行统计

用以下 Scala 程序生成这个文件

import java.io.FileWriter
import java.io.File
import scala.util.Random

object sheng {
  def main(args:Array[String]) {
        val writer = new FileWriter(new File("/home/hadoop/sheng.txt"),false)
        val rand = new Random()
        for ( i <- 1 to 10000) {
          var height = rand.nextInt(220)
          if (height < 50) {
            height = height + 50
          }
          var gender = getRandomGender
          if (height < 100 && gender == "M")
            height = height + 100
          if (height < 100 && gender == "F")
            height = height + 50
          writer.write( i + " " + getRandomGender + " " + height)
          writer.write(System.getProperty("line.separator"))
        }
        writer.flush()
        writer.close()
        println("People Information File generated successfully.")
      }

      def getRandomGender() :String = {
        val rand = new Random()
        val randNum = rand.nextInt(2) + 1
        if (randNum % 2 == 0) {
          "M"
        } else {
          "F"
        }
        }
       

生成文本如下:

1 M 177
2 F 210
3 M 193
4 M 220
......
  • 编程实现

先把男女数据分开保存,再分别求出最值

import org.apache.spark.{SparkConf, SparkContext}
object sheng {
  def main(args:Array[String]) {
    val conf = new SparkConf().setMaster("local").setAppName("shengg")
    val sc = new SparkContext(conf)
    val t = sc.textFile("file:///home/hadoop/sheng.txt")
    //t.filter(i=>i.contains("M")).map(i=>i.split(" ")(1)+" "+i.split(" ")(2)).collect().foreach(println)
    val t1 = t.filter(i => i.contains("M")).map(i => i.split(" ")(1) + " " + i.split(" ")(2))
    val t2 = t.filter(i => i.contains("M")).map(i => i.split(" ")(1) + " " + i.split(" ")(2))

    val t3 = t1.map(i => i.split(" ")(1).toInt).sortBy(i => i)
      println("M:min " + t3.first())

    val t4 = t1.map(i => i.split(" ")(1).toInt).sortBy(i => i, false)
    println("M:max " + t4.first())

    val s1 = t.filter(i => i.contains("F")).map(i => i.split(" ")(1) + " " + i.split(" ")(2))
    val s2 = t.filter(i => i.contains("F")).map(i => i.split(" ")(1) + " " + i.split(" ")(2))

    val s3 = s1.map(i => i.split(" ")(1).toInt).sortBy(i => i)
    println("F:min " + s3.first())
    val s4 = s2.map(i => i.split(" ")(1).toInt).sortBy(i => i, false)
    println("F:max " + s4.first())
    sc.stop()
  }
}

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5699848.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-17
下一篇 2022-12-17

发表评论

登录后才能评论

评论列表(0条)

保存