函数表达式:f(x)=max{0,x}, x∈(-∞,+∞)
绘图程序# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt def relu(x): y = x.copy() y[y < 0] = 0 return y x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_relu = relu(x) plt.plot(x, y_relu, 'b', linewidth=2.5, label=u'relu') plt.legend(loc='upper left',fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/relu.jpeg", dpi=600, format="jpeg") #savefig要写在show前面,不然保存的就是空白图片 plt.show()2,Sigmoid
函数表达式:f(x)=1/(1+e^(-x) ) , x∈(-∞,+∞)
绘图程序# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt def sigmoid(x): return 1.0 / (1.0 + exp(-x)) x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_sigmoid = sigmoid(x) plt.plot(x, y_sigmoid, 'b', linewidth=2.5, label=u'sigmoid') plt.legend(loc='upper left', fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/sigmoid.jpeg", dpi=600, format="jpeg") # savefig要写在show前面,不然保存的就是空白图片 plt.show()3,Tanh 绘图程序
# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt def tanh(x): return 2.0 / (1.0 + exp(-2 * x)) - 1 x = np.arange(-10, 10,0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_tanh = tanh(x) plt.plot(x, y_tanh, 'b', linewidth=2.5, label=u'tanh') plt.legend(loc='upper left', fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/tanh.jpeg", dpi=600, format="jpeg") # savefig要写在show前面,不然保存的就是空白图片 plt.show()4,leakyrelu 绘图程序
# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist def leakyrelu(x): y = x.copy() for i in range(y.shape[0]): if y[i] < 0: y[i] = 0.2 * y[i] return y x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_relu = leakyrelu(x) plt.plot(x, y_relu, 'b', linewidth=2.5, label=u'leakyrelu') plt.legend(loc='upper left', fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/leakyrelu.jpeg", dpi=600, format="jpeg") # savefig要写在show前面,不然保存的就是空白图片 plt.show()5,Elu 绘图程序
在这里插入# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt def elu(x, a): y = x.copy() for i in range(y.shape[0]): if y[i] < 0: y[i] = a * (exp(y[i]) - 1) return y x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_relu = elu(x, 0.3) plt.plot(x, y_relu, 'b', linewidth=2.5, label=u'elu') plt.legend(loc='upper left', fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/elu.jpeg", dpi=600, format="jpeg") # savefig要写在show前面,不然保存的就是空白图片 plt.show() 代码片6,Gaussian 绘图程序
# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist def gaussian(x): return exp(-x**2) x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_gaussian = gaussian(x) plt.plot(x, y_gaussian, 'b', linewidth=2.5, label=u'gaussian') plt.legend(loc='upper left', fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/gaussian.jpeg", dpi=600, format="jpeg") # savefig要写在show前面,不然保存的就是空白图片 plt.show()7,Binary 绘图程序
# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist def binary(x): y = x.copy() y[y < 0] = 0 y[y > 0] = 1 return y x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_binary = binary(x) plt.plot(x, y_binary, 'b', linewidth=2.5, label=u'binary') plt.legend(loc='upper left',fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/binary.jpeg", dpi=600, format="jpeg") #savefig要写在show前面,不然保存的就是空白图片 plt.show()8,sinx 绘图程序
# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist def sinx(x): return sin(x)/x x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_sinx = sinx(x) plt.plot(x, y_sinx, 'b', linewidth=2.5, label=u'sinx') plt.legend(loc='upper left', fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/sinx.jpeg", dpi=600, format="jpeg") # savefig要写在show前面,不然保存的就是空白图片 plt.show()9,softpulx 绘图程序
# __author__ = 'czx' # coding=utf-8 import numpy as np from math import log10 from numpy import * import matplotlib.pyplot as plt import mpl_toolkits.axisartist as axisartist def Softplus(x): return log10(exp(x)+1) x = np.arange(-10, 10, 0.01) plt.tick_params(labelsize=14) # 刻度字体大小14 y_Softplus = Softplus(x) plt.plot(x, y_Softplus, 'b', linewidth=2.5, label=u'Softplus') plt.legend(loc='upper left', fontsize=16, frameon=False) # 图例字体大小16 plt.tight_layout() # 去除边缘空白 plt.savefig("F:/激活函数/Softplus.jpeg", dpi=600, format="jpeg") # savefig要写在show前面,不然保存的就是空白图片 plt.show()合在一起的激活函数图
# __author__ = 'czx' # coding=utf-8 import numpy as np from numpy import * import matplotlib import matplotlib.pyplot as plt def sigmoid(x): return 1.0 / (1.0 + exp(-x)) def tanh(x): return 2.0 / (1.0 + exp(-2 * x)) - 1 def relu(x): y = x.copy() y[y < 0] = 0 return y def elu(x, a): y = x.copy() for i in range(y.shape[0]): if y[i] < 0: y[i] = a * (exp(y[i]) - 1) return y if __name__ == '__main__': x = arange(-3.0, 3.0, 0.01) y_sigmoid = sigmoid(x) y_tanh = tanh(x) y_relu = relu(x) y_elu = elu(x, 0.25) plt.plot(x, y_sigmoid, 'r', linewidth=2.5, label=u'sigmoid') plt.plot(x, y_tanh, 'g', linewidth=2.5, label=u'tanh') plt.plot(x, y_relu, 'b', linewidth=2.5, label=u'relu') plt.plot(x, y_elu, 'k', linewidth=2.5, label=u'elu') plt.ylim([-1, 1]) plt.xlim([-1, 1]) plt.legend() plt.grid(color='b', linewidth='0.3', linestyle='--') plt.show()
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)