概述
xgboost库与XGB的sklearn API
概述 xgboost库与XGB的sklearn API有两种方式可以来使用我们的xgboost库。第一种方式,是直接使用xgboost库自己的建模流程。
其中最核心的,是DMtarix这个读取数据的类,以及train()这个用于训练的类。与sklearn把所有的参数都写在类中的 方式不同,xgboost库中必须先使用字典设定参数集,再使用train来将参数及输入,然后进行训练。会这样设计的原 因,是因为XGB所涉及到的参数实在太多,全部写在xgb.train()中太长也容易出错。在这里,我为大家准备了
params可能的取值以及xgboost.train的列表,给大家一个印象。
params {eta, gamma, max_depth, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, colsample_bynode, lambda, alpha, tree_method string, sketch_eps, scale_pos_weight, updater, refresh_leaf, process_type, grow_policy, max_leaves, max_bin, predictor, num_parallel_tree}
xgboost.train (params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, maximize=False, early_stopping_rounds=None, evals_result=None, verbose_eval=True, xgb_model=None, callbacks=None, learning_rates=None)
或者,我们也可以选择第二种方法,使用xgboost库中的sklearn的API。这是说,我们可以调用如下的类,并用我们
sklearn当中惯例的实例化,fit和predict的流程来运行XGB,并且也可以调用属性比如coef_等等。当然,这是我们回 归的类,我们也有用于分类,用于排序的类。他们与回归的类非常相似,因此了解一个类即可。
class xgboost.XGBRegressor (max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective=‘reg:linear’, booster=‘gbtree’, n_jobs=1, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=0, seed=None, missing=None, importance_type=‘gain’, **kwargs)
看到这长长的参数条目,可能大家会感到头晕眼花——没错XGB就是这门复杂。但是眼尖的小伙伴可能已经发现了, 调用xgboost.train和调用sklearnAPI中的类XGBRegressor,需要输入的参数是不同的,而且看起来相当的不同。但 其实,这些参数只是写法不同,功能是相同的。比如说,我们的params字典中的第一个参数eta,其实就是我们
XGBRegressor里面的参数learning_rate,他们的含义和实现的功能是一模一样的。只不过在sklearnAPI中,开发团 队友好地帮助我们将参数的名称调节成了与sklearn中其他的算法类更相似的样子。
所以对我们来说,使用xgboost中设定的建模流程来建模,和使用sklearnAPI中的类来建模,模型效果是比较相似 的,但是xgboost库本身的运算速度(尤其是交叉验证)以及调参手段比sklearn要简单。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)