Spark运行WordCount(案例二)
具体细节参考Spark运行WordCount(案例一):
https://zhangvalue.blog.csdn.net/article/details/122501292https://zhangvalue.blog.csdn.net/article/details/122501292
和前期准备工作:
Mac安装Spark并运行SparkPi_zhangvalue的博客-CSDN博客Mac安装Spark2.4.7https://archive.apache.org/dist/spark/spark-2.4.7/spark-2.4.7-bin-hadoop2.7.tgz解压tgz文件tar xvf spark-2.4.7-bin-hadoop2.7.tgz先创建scala项目并进行编译打成jar包然后就打好成了本地的jar包打包一个jar包通过sparksubmit提交./bin...https://zhangvalue.blog.csdn.net/article/details/122501186
import org.apache.spark.{SparkConf, SparkContext} object WorkCount { def main(args: Array[String]) { if (args.length < 1) { System.err.println("Usage:") System.exit(1) } val conf = new SparkConf() val sc = new SparkContext(conf) //SparkContext 是把代码提交到集群或者本地的通道,我们编写 Spark代码,无论是要运行本地还是集群都必须有 SparkContext 的实例。 val line = sc.textFile(args(0)) //把读取的内容保存给line变量,其实line是一个MappedRDD,Spark的代码,都是基于RDD *** 作的; line.flatMap(_.split("")).map((_, 1)).reduceByKey(_+_).collect.foreach(println) sc.stop } }
#!/bin/bash cd $SPARK_HOME/bin spark-submit --master spark://localhost:7077 --class WorkCount --name WorkCount --executor-memory 2048M --driver-memory 3096M /Users/zhangsf/bigdata/myjar/wordcount.jar hdfs://localhost:9000/zhangvalue/input/poet.txt
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)