最近在写hiveUDF的时候,遇到了一些反序列的问题,具体的报错如下:
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 11 in stage 6.0 failed 4 times, most recent failure: Lost task 11.3 in stage 6.0 (TID 105) (dw-csprd-bigdata-athena-dn-096.shizhuang-inc.com executor 3): com.esotericsoftware.kryo.KryoException: Unable to find class: scala.collection.immutable.HashMap$$$Lambda/282828951 Serialization trace: mergef (scala.collection.immutable.HashMap$$anon) defaultMerger (scala.collection.immutable.HashMap$) _2 (scala.Tuple2) head (scala.collection.immutable.$colon$colon) factories (com.fasterxml.jackson.module.scala.deser.UnsortedMapDeserializerModule$$anon) _additionalDeserializers (com.fasterxml.jackson.databind.cfg.DeserializerFactoryConfig) _factoryConfig (com.fasterxml.jackson.databind.deser.BeanDeserializerFactory) _factory (com.fasterxml.jackson.databind.deser.DefaultDeserializationContext$Impl) _deserializationContext (com.fasterxml.jackson.databind.ObjectMapper) objectMapper (xxx.xxxUDF) at com.esotericsoftware.kryo.util.DefaultClassResolver.readName(DefaultClassResolver.java:160) at com.esotericsoftware.kryo.util.DefaultClassResolver.readClass(DefaultClassResolver.java:133) at com.esotericsoftware.kryo.Kryo.readClass(Kryo.java:693) at org.apache.hadoop.hive.ql.exec.SerializationUtilities$KryoWithHooks.readClass(SerializationUtilities.java:181) at com.esotericsoftware.kryo.serializers.ObjectField.read(ObjectField.java:118) at com.esotericsoftware.kryo.serializers.FieldSerializer.read(FieldSerializer.java:543) at com.esotericsoftware.kryo.Kryo.readObject(Kryo.java:731)分析
我们的代码类似如下:
class xxxUDF extends GenericUDF { @transient var argumentOIs: Array[ObjectInspector] = _ val objectMapper = new ObjectMapper() objectMapper.registerModule(DefaultScalaModule) objectMapper.configure(Feature.ALLOW_UNQUOTED_FIELD_NAMES, true) objectMapper.configure(Feature.ALLOW_SINGLE_QUOTES, true) val result: Text = new Text()
其中spark的配置是使用kryo序列化,spark.serializer=org.apache.spark.serializer.KryoSerializer
可以看到是objectMapper类在driver端在把UDF传给executor的时候,需要做UDF的序列化,而序列化的时候,就会把objectMapper字段进行序列化,
这样在executor端进行task.run的时候会把 objectMapper反序列化出来,这个时候如果对应的类的成员方法如果没有进行kryo的注册,就会直接报序列化的错误,
而spark目前的默认注册的kryo类在KryoSerializer.scala中,如下:
... kryo.register(None.getClass) kryo.register(Nil.getClass) kryo.register(Utils.classForName("scala.collection.immutable.$colon$colon")) kryo.register(Utils.classForName("scala.collection.immutable.Map$EmptyMap$")) kryo.register(classOf[ArrayBuffer[Any]]) ...解决
在objectMapper加上@transient注解,使该对象不被序列化,这样在反序列化的时候,就不会反序列化该对象
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)