问题描述
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
给出一列数{undefinedpi}={undefinedp0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{undefinedpi}中最小的两个数,设为pa和pb,将pa和pb从{undefinedpi}中删除掉,然后将它们的和加入到{undefinedpi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{undefinedpi}中只剩下一个数。
在上面的 *** 作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{undefinedpi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{undefinedpi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{undefinedpi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{undefinedpi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{undefinedpi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入格式
输入的第一行包含一个正整数n(n<=100)。
接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
题目简介:这个题目意思就是一串数字,找出他们之间最小的两个数,然后求和,求和结果代替这两个数,这个值用sum求和加起来(sum初始为0),然后循环直到最后一个树,求sum。
主要思路:1、先将这个数组按自然循序排列(Arrays.sort("这里填数组");)2、直接取最前面两个数,然后求和。3、把第一个最小下标数组的值变为0,第二个数组变为前面求的和,做n-1次。
主要代码:
for(int i=0;i Arrays.sort(a); int sum1=a[i]+a[i+1]; a[i]=0; a[i+1]=sum1; sum+=sum1; } 欢迎分享,转载请注明来源:内存溢出
评论列表(0条)