Hive 安装、配置、数据导入和使用

Hive 安装、配置、数据导入和使用,第1张

Hive 安装、配置数据导入和使用

Hive 安装、配置、数据导入和使用

Hive 下载Hive 的环境Hive 配置Hive 数据导入总结

Hive 下载

首先到Apache Hive TM下载软件

随便写一个,都比较慢

下载二进制文件

Hive 的环境

首先将下载的压缩包上传到linux中

将下载后的压缩包解压到合适的位置tar -zxvf apache-hive-2.3.9-bin.tar.gz

然后配置环境变量vi ~/.bash_profile

将HIVE_HOME配置到Path中

增加

HIVE_HOME=/hive
export HIVE_HOME
PATH=$PATH:$HIVE_HOME/bin
Hive 配置

此时我们启动hadoop后,就可以直接启动hive了。(如果你的JAVA_HOME,HADOOP_HOME都正确配置)

首先启动hadoophadoop安装_a18792721831的博客-CSDN博客

启动hdfs

访问hadoop01:9870验证hdfs是否启动成功

然后启动yarn

在浏览器中验证hadoop01:8088

在hive的conf目录中拷贝hive-default.xml.template文件,并重命名为hive-site.xml

删除原有的配置,并增加如下配置

  
    javax.jdo.option.ConnectionURL
    jdbc:mysql://hadoop01:3306/hive?createDatabaseIfNotExist=true
  
  
    javax.jdo.option.ConnectionDriverName
    com.mysql.cj.jdbc.Driver
  
  
    javax.jdo.option.ConnectionUserName
    root
  
  
    javax.jdo.option.ConnectionPassword
    123456
  
  
    hive.metastore.schema.verification
    false
  

需要在linux中安装mysql,执行yum install -y mariadb-server即可

安装后执行systemctl start mariabd启动,执行systemctl status mariadb查看状态

启动mariadb后,初始化root密码,执行mysql_secure_installation

根据提示选择就行,我设置的root密码是123456

设置完成后使用systemctl restart mariadb重启

然后进入mysql,设置root用户允许远程登录

mysql -u root -p登录

然后执行GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '123456';

我为了防止密码记错,就设置相同的密码

'root'@'%', root表示远端登录使用的用户名,%表示允许任意ip登录,可将指定ip替换掉%, root与%可以自定义

IDENTIFIED BY '123456' 这个123456 是登录时的使用的密码,(方便记忆就用了root,生产环境一定要替换掉)

最后执行flush privileges;刷新

然后使用工具测试一下,root是否可以远程登录

然后在maven仓库下载mysql的连接驱动

并拷贝到hive的lib目录下

要使用hive还需要进行初始化

执行schematool -initSchema -dbType mysql初始化数据库

初始化完成后,会在mysql中创建一些元数据相关的表

初始化完成后,就可以使用hive了

Hive 数据导入

现在hive中什么数据都没有,我们首先在hive中创建一张表,然后把一些数据导入,这样我们就可以快乐的使用hive ql玩耍了。

打开GettingStarted - Apache Hive - Apache Software Foundation,在目录中找到DDL

可以看到,DDL很简单,当然我是指简单入门级的使用,很简单,如果深入,那么一定需要一定的时间去研究的。

首先创建我们自己玩的数据库

create database if not exists test_column;

然后切换到创建的数据库 *** 作

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PccRQvgL-1642520963121)(https://gitee.com/jyq_18792721831/blogImages/raw/master/img/20220118212512.png)]

use test_column;

准备的测试数据,其实就是mysql中information_schema数据库中的COLUMNS表

这个表的列很多,正好用来体验hive。

首先是创建表的语句

CREATE TABLE IF NOT EXISTS columns(table_catalog STRING, table_schema STRING, table_name STRING, column_name STRING, ordinal_position INT, column_default STRING, is_nullable STRING, data_type STRING, character_maximum_length INT, character_octet_length INT, numberic_precision INT, numberic_scale INT, dateime_precision STRING, character_set_name STRING, collation_name STRING, column_type STRING, column_key STRING, extra STRING, privileges STRING, column_comment STRING) row format delimited fields terminated by ',';

row format delimited fields terminated by ','意思是行中的每个属性按照逗号分割,对应csv文件。

接着从navicat中把数据导出来

选择csv文件,其实什么文件都一样,大部分文件都支持

查看导出的数据

数据文件上传到服务器中,随便放到哪里

接着我们就需要 *** 作数据了,还是看官方文档

选择数据导入

我们使用最新版本的命令,注意自己的版本

使用如下hive ql:

LOAD DATA LOCAL INPATH '/hive/COLUMNS.csv' INTO TABLE columns;

我们查询下

select count(1) from columns;

执行后会提交一个mapreduce的任务

查看任务的信息

这是任务的详情

执行完成后,就会返回结果

我们可以看下和数据库的对比

是相同的.

其他的一些使用

select * from columns;

比如查询data_type 为varchar的列有多少?

hive : select count(1) from columns c where c.data_type = 'varchar';

竟然是0,看来是我的脚本写的有问题啊。

总结

虽然看起来hive比mysql慢的多得多了,确实如此,在小数据量的时候,关系型数据库比较快,但是当有非常大的数据量的时候,比如亿,或者更大数据量的时候,hive的能力就体现出来了。因为hive是在hadoop的基础上运行的。

hive将hive ql解析为hadoop的任务,然后使用mapreduce或者spark或者tez的计算引擎进行执行,大大简化了我们直接使用计算的引擎的难度。

说实话,在上面中,用hive和mysql比速度,实际上是用关系型数据库的长处去比hive的短处,特别是在小数据量的情况下。

不管怎么说,到了这里,hive的搭建,以及hive的初步使用,有了一定的体验,至少直观的感受了hive是在大数据生态环境中的作用。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5708948.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-17
下一篇 2022-12-17

发表评论

登录后才能评论

评论列表(0条)

保存