Spark RDD的交差并集

Spark RDD的交差并集,第1张

Spark RDD的交差并集
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object Demo01 {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("stone").setMaster("local")

    val sc = new SparkContext(conf)
    sc.setLogLevel("ERROR")

    val v1 = sc.parallelize(List(1, 2, 3, 4))

    val v2 = sc.parallelize(List(6, 5, 3, 4))

     v1.foreach(println)

     v2.foreach(println)

    println("--------------union-----------")
     v1.union(v2).foreach(println)

    println("--------------distinct-----------")
    v1.union(v2).distinct().foreach(println)
    println("--------------fileter-----------")
    v1.union(v2).distinct().filter(_ >=3).foreach(print)

    println("--------------差集-----------")

    v1.subtract(v2).foreach(print)


    println("--------------交集-----------")

    v1.intersection(v2).foreach(print)


    println("--------------dikaer-----------")

    v1.cartesian(v2).foreach(print)


    println(v1.partitions.size)




    println("--------------=====-----------")

    val kv1: RDD[(String, Int)] = sc.parallelize(List(
      ("zhang", 11),
      ("zhangsan", 12),
      ("lisi", 13),
      ("wangwu", 14)
    ))
    val kv2: RDD[(String, Int)] = sc.parallelize(List(
      ("zhan", 21),
      ("zhang", 22),
      ("lisi", 23),
      ("zhaoliu", 28)
    ))
    val cogroup: RDD[(String, (Iterable[Int], Iterable[Int]))] = kv1.cogroup(kv2)

    cogroup.foreach(println)

        val join: RDD[(String, (Int, Int))] = kv1.join(kv2)

        join.foreach(println)


    println("--------------=====-----------")
    val left: RDD[(String, (Int, Option[Int]))] = kv1.leftOuterJoin(kv2)

        left.foreach(println)

    println("--------------=====-----------")
        val right: RDD[(String, (Option[Int], Int))] = kv1.rightOuterJoin(kv2)
        right.foreach(println)
    println("--------------=====-----------")

        val full: RDD[(String, (Option[Int], Option[Int]))] = kv1.fullOuterJoin(kv2)
        full.foreach(println)

  }

}

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5709111.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-17
下一篇 2022-12-17

发表评论

登录后才能评论

评论列表(0条)

保存