给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
示例 4:
输入: nums = [1,3,5,6], target = 0
输出: 0
示例 5:
输入: nums = [1], target = 0
输出: 0
提示:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums 为无重复元素的升序排列数组
-104 <= target <= 104
class Solution { public int searchInsert(int[] nums, int target) { for(int i = 0;i < nums.length; i++) { if(nums[i] >= target) { return i; } } return nums.length; } }结果: 第二种解法:二分查找法
int searchInsert(vector& nums, int target) { int n = nums.size(); int left = 0; int right = n - 1; // 定义target在左闭右闭的区间里,[left, right] while (left <= right) { // 当left==right,区间[left, right]依然有效 int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2 if (nums[middle] > target) { right = middle - 1; // target 在左区间,所以[left, middle - 1] } else if (nums[middle] < target) { left = middle + 1; // target 在右区间,所以[middle + 1, right] } else { // nums[middle] == target return middle; } } // 分别处理如下四种情况 // 目标值在数组所有元素之前 [0, -1] // 目标值等于数组中某一个元素 return middle; // 目标值插入数组中的位置 [left, right],return right + 1 // 目标值在数组所有元素之后的情况 [left, right], return right + 1 return right + 1;
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)