奶牛正在试验秘密代码,并设计了一种方法来创建一个无限长的字符串作为其代码的一部分使用。
给定一个字符串,让后面的字符旋转一次(每一次正确的旋转,最后一个字符都会成为新的第一个字符)。也就是说,给定一个初始字符串,之后的每一步都会增加当前字符串的长度。
给定初始字符串和索引,请帮助奶牛计算无限字符串中位置N的字符。
输入格式第一行输入一个字符串。该字符串包含最多30个大写字母,并
输入输出样例输入 #1复制
COW 8
输出 #1复制
C说明/提示
In this example, the initial string COW expands as follows:
COW -> COWWCO -> COWWCOOCOWWC
12345678
N≤10^18 。
第二行输入N。请注意,数据可能很大,放进一个标准的32位整数可能不够,所以你可能要使用一个64位的整数类型(例如,在C / C++ 中是 long long)。
思路:
这道题直接模拟,内存会爆。所以,这道题需要想办法缩小空间。
我们可以观察题目找规律:我们可以发现,题目只需要我们求出一个字母就行了,而且,我们可以发现从第二个字符开始到倒数第二个字符期间的字符串和第二位字符到最够一位字符的字符串一样(COW--->COWWCO--->COWWCOOCOWWC),只有最后一位字符和倒转后的新串的第一位字符一样。
这样我们就可以猜想有没有一个公式:可以让我们缩小字符串的长度,从后面开始往前面推,只需要把我们想要的字符推出来就好了。
我们观察,第八位是倒转后的新串的第二位,因为倒转的新串与前面的串一样,所以我们可以推出第八位对应的是前一个串的第一位。(COW--->COWWCO--->COWWCOOCOWWC)
我们可以看到,前面的串长度为6(COWWCO),8-6=2,2对应的是O,O与我们所推的字符不一致,所以,我们观察可以得到在倒转得新串上多了一个倒转字符(COWWCOOCOWWC),需要再-1,即8-6-1=1。
推出公式:n=n-(新串长度/2)-1;如果刚好是倒转得字符则需另外处理:n=(新串长度/2);
注意:string 是从下标为 0 开始的;
#include#include #include #include #include using namespace std; long long n,m,tmp; string x; int main() { cin>>x>>n; m=x.length(); tmp=x.length(); while(m 1) n=n-m-1; else if(n-m==1)//特殊判断一下倒转的字符; n=m; //倒转字符在前一个串的最后一个; m/=2;//不断的求前一个串的长度; } cout<
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)