4. 多重
背包问题 I
4. 多重背包问题 I
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0 0
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
代码:
#include
using namespace std;
const int N = 110;
int n, m;
int v[N], w[N], s[N];
int f[N][N];
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
cin >> v[i] >> w[i] >> s[i];
for (int i = 1; i <= n; i++)
{
for (int j = 0; j <= m; j++)
{
for (int k = 0; k <= s[i] && k * v[i] <= j; k++)
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + w[i] * k);
}
}
cout << f[n][m] << endl;
return 0;
}
评论列表(0条)