从源码中学习Java集合中的List集合,详细而透彻,一步到位

从源码中学习Java集合中的List集合,详细而透彻,一步到位,第1张

从源码中学习Java集合中的List集合,详细而透彻,一步到位

零基础学习Java之List集合

概述List的使用

List的常用方法

基本介绍代码示例 List的实现类

ArrayListVectorlinkedList ArrayList与Vector的区别

概述

List是一个有序集合(也被称为序列)。此接口的用户在列表中的每个元素都被插入的地方有精确的控制。用户可以通过它们的整数索引(在列表中的位置)访问元素,并在列表中搜索元素。 说是List集合,其实只是习惯说法,因为它是Collection接口的一个子接口(Collection有很多的子接口,这是其中三个主要的子接口之一,另外两个后面都会说到),所以Collection接口中定义的方法在List接口中也是可以使用的,另外还根据List的特点,又引入了其他的方法。

List接口的特点:

元素是以一种线性方式进行存储的元素存取有序,即元素的存入顺序和取出顺序一致。元素带有索引,通过索引就可以精确的 *** 作集合中的元素(与数组类似)元素可以重复,通过元素的equals方法,来比较是否为重复的元素 List的使用 List的常用方法 基本介绍

这里说的常用方法是指除了实现Collection接口之外的。前面说到List集合中的元素是可以通过索引来 *** 作集合中的元素的,所以List 集合里添加了一些根据索引来 *** 作集合元素的方法。下面对这些方法进行简单介绍:

void add(iint index, E element): 在列表中指定的位置上插入指定的元素boolean addAll(int index, Collection c): 将指定的集合中的所有元素插入到指定位置的列表中E get(int index):返回此列表中指定位置的元素List subList(int fromIndex, int toIndex):返回List中一部分对象的集合,即返回的集合是List的子集合,并是以下标索引取值。父集合List以fromIndex开始(包含),到toIndex结束(不包含)的 部分为返回的子集合int indexOf(Object obj):返回此列表中指定元素的第一个出现的索引,如果此列表不包含元素,返回- 1int lastIndexOf(Object obj):返回此列表中指定元素的最后一个发生的索引,如果此列表不包含元素,返回- 1E remove(int index):移除此列表中指定位置的元素E set(int index, E element):用指定元素替换此列表中指定位置的元素 代码示例

public class ListDemo {
    public static void main(String[] args) {
		// 通过List的实现类ArrayList创建List集合对象
    	List list = new ArrayList();

    	// 指定位置添加元素
    	list.add(0,"jack");
    	list.add(1,"rose");	
    	list.add(2,"marry");		
    	System.out.println(list);
    	
    	// 删除索引位置为2的元素 
    	list.remove(2);    	
    	System.out.println(list);
    	
    	// 指定元素替换此列表中指定位置的元素
    	list.set(0, "老王");
    	System.out.println(list);
    	
    	// 获取指定位置元素(也遍历输出下)	
    	for(int i = 0;i 
List的实现类 

作为一个接口,List的实现类才是我们创建对象时候使用的(上面代码示例里面用到了ArrayList实现类)。在List接口里,有三个常用的实现类:ArrayList、Vector、linkedList。下面从源码中分析和介绍它们。

ArrayList

ArrayList底层通过数组实现,ArrayList可以随着元素的增加而动态扩容。它是一个数组队列,是Java集合框架中使用最多的一个类,但是它是线程不安全的。

特点:以数组的形式进行存储,因此随机访问速度较快,所有它适用于查询缺点:不适用于插入和删除的 *** 作 因为每次 *** 作都需要移动数组中的元素;线程不安全

下面看下ArrayList的源码

public class ArrayList extends AbstractList
        implements List, RandomAccess, Cloneable, java.io.Serializable{
    
    private static final int DEFAULT_CAPACITY = 10;
   
    private static final Object[] EMPTY_ELEMENTDATA = {};
  
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    public ArrayList() {
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;//初始化为空数组
    }


    public boolean add(E e) {
        //查看当前数组是否够多存一个元素
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        
        //存入新元素到[size]位置,然后size自增1
        elementData[size++] = e;
        return true;
    }
   
   private void ensureCapacityInternal(int minCapacity) {
        ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
    }

   private static int calculateCapacity(Object[] elementData, int minCapacity) {
  		 //如果当前数组还是空数组
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
        //那么minCapacity取DEFAULT_CAPACITY与minCapacity的最大值
            return Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        //查看是否需要扩容
        return minCapacity;
      }
    
    private void ensureExplicitCapacity(int minCapacity) {
        modCount++;//修改次数加1

        // 如果需要的最小容量比当前数组的长度大,即当前数组不够存,就扩容
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;//当前数组容量
        int newCapacity = oldCapacity + (oldCapacity >> 1);//新数组容量是旧数组容量的1.5倍
        //看旧数组的1.5倍是否够
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        //看旧数组的1.5倍是否超过最大数组限制
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        
        //复制一个新数组
        elementData = Arrays.copyOf(elementData, newCapacity);
  	}
  	public boolean remove(Object o) {
        //先找到o在当前ArrayList的数组中的下标
        //分o是否为空两种情况讨论
        if (o == null) {
            for (int index = 0; index < size; index++)
                if (elementData[index] == null) {//null值用==比较
                    fastRemove(index);
                    return true;
                }
        } else {
            for (int index = 0; index < size; index++)
                if (o.equals(elementData[index])) {//非null值用equals比较
                    fastRemove(index);
                    return true;
                }
        }
        return false;
    }
    private void fastRemove(int index) {
        modCount++;//修改次数加1
        //需要移动的元素个数
        int numMoved = size - index - 1;
        
        //如果需要移动元素,就用System.arraycopy移动元素
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        
        //将elementData[size-1]位置置空,让GC回收空间,元素个数减少
        elementData[--size] = null; // clear to let GC do its work
    }
    public E remove(int index) {
        rangeCheck(index);//检验index是否合法

        modCount++;//修改次数加1
        
        //取出[index]位置的元素,[index]位置的元素就是要被删除的元素,用于最后返回被删除的元素
        E oldValue = elementData(index);
        
		//需要移动的元素个数
        int numMoved = size - index - 1;
        
        //如果需要移动元素,就用System.arraycopy移动元素
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        //将elementData[size-1]位置置空,让GC回收空间,元素个数减少
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }
    public E set(int index, E element) {
        rangeCheck(index);//检验index是否合法

        //取出[index]位置的元素,[index]位置的元素就是要被替换的元素,用于最后返回被替换的元素
        E oldValue = elementData(index);
        //用element替换[index]位置的元素
        elementData[index] = element;
        return oldValue;
    }
    public E get(int index) {
        rangeCheck(index);//检验index是否合法

        return elementData(index);//返回[index]位置的元素
    }
     public int indexOf(Object o) {
        //分为o是否为空两种情况
        if (o == null) {
            //从前往后找
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }
    public int lastIndexOf(Object o) {
         //分为o是否为空两种情况
        if (o == null) {
            //从后往前找
            for (int i = size-1; i >= 0; i--)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = size-1; i >= 0; i--)
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

从上面的源码中我们可以看到:

ArrayList 在初始化的时候如果我们没有指定长度的话,它会有一个默认长度10,每次扩容的时候为增加1.5倍然后是ArrayList 的一些常见的方法的源码介绍 Vector

Vector的底层也是通过数组实现,方法与ArrayList基本一致,。但是Vector是线程安全的. 这是因为其加上了 synchronized 关键字, 用来保证线程安全。

优点: 以数组的形式进行存储,因此随机访问速度较快,所有它适用于查询;线程安全缺点: 不适用于插入和删除的 *** 作 因为每次 *** 作都需要移动数组中的元素

下面看下Vector的源码

  
    public Vector() {
        this(10); //指定初始容量initialCapacity为10
    }
    public Vector(int initialCapacity) {
        this(initialCapacity, 0);//指定capacityIncrement增量为0
    }
    public Vector(int initialCapacity, int capacityIncrement增量为0) {
        super();
        //判断了形参初始容量initialCapacity的合法性
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        //创建了一个Object[]类型的数组
        this.elementData = new Object[initialCapacity];//默认是10
        //增量,默认是0,如果是0,后面就按照2倍增加,如果不是0,后面就按照你指定的增量进行增量
        this.capacityIncrement = capacityIncrement;
    }
    //synchronized意味着线程安全的   
	public synchronized boolean add(E e) {
        modCount++;
    	//看是否需要扩容
        ensureCapacityHelper(elementCount + 1);
    	//把新的元素存入[elementCount],存入后,elementCount元素的个数增1
        elementData[elementCount++] = e;
        return true;
    }

    private void ensureCapacityHelper(int minCapacity) {
        // overflow-conscious code
        //看是否超过了当前数组的容量
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);//扩容
    }
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;//获取目前数组的长度
        //如果capacityIncrement增量是0,新容量 = oldCapacity的2倍
        //如果capacityIncrement增量是不是0,新容量 = oldCapacity + capacityIncrement增量;
        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                                         capacityIncrement : oldCapacity);
        
        //如果按照上面计算的新容量还不够,就按照你指定的需要的最小容量来扩容minCapacity
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        
        //如果新容量超过了最大数组限制,那么单独处理
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        
        //把旧数组中的数据复制到新数组中,新数组的长度为newCapacity
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
     public boolean remove(Object o) {
        return removeElement(o);
    }
    public synchronized boolean removeElement(Object obj) {
        modCount++;
        //查找obj在当前Vector中的下标
        int i = indexOf(obj);
        //如果i>=0,说明存在,删除[i]位置的元素
        if (i >= 0) {
            removeElementAt(i);
            return true;
        }
        return false;
    }
    public int indexOf(Object o) {
        return indexOf(o, 0);
    }
    public synchronized int indexOf(Object o, int index) {
        if (o == null) {//要查找的元素是null值
            for (int i = index ; i < elementCount ; i++)
                if (elementData[i]==null)//如果是null值,用==null判断
                    return i;
        } else {//要查找的元素是非null值
            for (int i = index ; i < elementCount ; i++)
                if (o.equals(elementData[i]))//如果是非null值,用equals判断
                    return i;
        }
        return -1;
    }
    public synchronized void removeElementAt(int index) {
        modCount++;
        //判断下标的合法性
        if (index >= elementCount) {
            throw new ArrayIndexOutOfBoundsException(index + " >= " +
                                                     elementCount);
        }
        else if (index < 0) {
            throw new ArrayIndexOutOfBoundsException(index);
        }
        
        //j是要移动的元素的个数
        int j = elementCount - index - 1;
        //如果需要移动元素,就调用System.arraycopy进行移动
        if (j > 0) {
            //把index+1位置以及后面的元素往前移动
            //index+1的位置的元素移动到index位置,依次类推
            //一共移动j个
            System.arraycopy(elementData, index + 1, elementData, index, j);
        }
        //元素的总个数减少
        elementCount--;
        //将elementData[elementCount]这个位置置空,用来添加新元素,位置的元素等着被GC回收
        elementData[elementCount] = null; 
    }

从上面的源码中我们可以看到:

Vector在初始化的时候如果我们没有指定长度的话,它会有一个默认长度10,每次扩容的时候为增加2倍然后是Vector的一些常见的方法的源码介绍 linkedList

linkedList底层的数据存储结构是链表结构,而且还是一个双向链表,可以实现双向 *** 作。此外,linkedList还实现了栈和队列的 *** 作方法,因此也可以作为栈、队列和双端队列来使用,如peek 、push、pop等方法。

优点: 以链表形式进行存储,因此随机访问速度查询慢,增删快。缺点: 线程不安全

下面看一下源码

int size = 0;
Node first;//记录第一个结点的位置
Node last;//记录最后一个结点的位置

    private static class Node {
        E item;//元素数据
        Node next;//下一个结点
        Node prev;//前一个结点

        Node(Node prev, E element, Node next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }
      public boolean add(E e) {
        linkLast(e);//默认把新元素链接到链表尾部
        return true;
    }
    void linkLast(E e) {
        final Node l = last;//用l 记录原来的最后一个结点
        
        //创建新结点
        final Node newNode = new Node<>(l, e, null);
        //现在的新结点是最后一个结点了
        last = newNode;
        
        //如果l==null,说明原来的链表是空的
        if (l == null)
            //那么新结点同时也是第一个结点
            first = newNode;
        else
            //否则把新结点链接到原来的最后一个结点的next中
            l.next = newNode;
        //元素个数增加
        size++;
        //修改次数增加
        modCount++;
    }
     public boolean remove(Object o) {
        //分o是否为空两种情况
        if (o == null) {
            //找到o对应的结点x
            for (Node x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);//删除x结点
                    return true;
                }
            }
        } else {
            //找到o对应的结点x
            for (Node x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);//删除x结点
                    return true;
                }
            }
        }
        return false;
    }
    E unlink(Node x) {//x是要被删除的结点
        // assert x != null;
        final E element = x.item;//被删除结点的数据
        final Node next = x.next;//被删除结点的下一个结点
        final Node prev = x.prev;//被删除结点的上一个结点

        //如果被删除结点的前面没有结点,说明被删除结点是第一个结点
        if (prev == null) {
            //那么被删除结点的下一个结点变为第一个结点
            first = next;
        } else {//被删除结点不是第一个结点
            //被删除结点的上一个结点的next指向被删除结点的下一个结点
            prev.next = next;
            //断开被删除结点与上一个结点的链接
            x.prev = null;//使得GC回收
        }

        //如果被删除结点的后面没有结点,说明被删除结点是最后一个结点
        if (next == null) {
            //那么被删除结点的上一个结点变为最后一个结点
            last = prev;
        } else {//被删除结点不是最后一个结点
            //被删除结点的下一个结点的prev执行被删除结点的上一个结点
            next.prev = prev;
            //断开被删除结点与下一个结点的连接
            x.next = null;//使得GC回收
        }
		//把被删除结点的数据也置空,使得GC回收
        x.item = null;
        //元素个数减少
        size--;
        //修改次数增加
        modCount++;
        //返回被删除结点的数据
        return element;
    }

从上面的源码中我们可以看到:

linkedList是基于链表的,所以没有扩容方法,默认加入元素是尾部自动扩容然后是linkedList的一些常见的方法的源码介绍 ArrayList与Vector的区别

它们的底层结构都是数组,我们称为动态数组。

ArrayList是新版的动态数组,线程不安全,效率高,Vector是旧版的动态数组,线程安全,效率低。动态数组的扩容机制不同,ArrayList扩容为原来的1.5倍,Vector扩容增加为原来的2倍。数组的初始化容量,如果在构建ArrayList与Vector的集合对象时,没有显式指定初始化容量,那么Vector的内部数组的初始容量默认为10,而ArrayList在JDK1.6及之前的版本也是10,而JDK1.7之后的版本ArrayList初始化为长度为0的空数组,之后在添加第一个元素时,再创建长度为10的数组。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5715406.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-17
下一篇 2022-12-17

发表评论

登录后才能评论

评论列表(0条)

保存