本小节示例Apriori算法的基本使用方法,apriori算法主要应用在推荐系统,用于挖掘出数据关联规则的算法,它用来找出数据值中频繁出现的数据集合,找出这些集合的模式有助于我们做一些决策。
1.源码修改
作者配套的源码是基于python2的,在python3环境运行有问题,报错如下
C:ProgramDataAnaconda3python.exe C:/Users/liujiannan/PycharmProjects/pythonProject/Web安全之机器学习入门/code/11-1.py Traceback (most recent call last): File "C:/Users/liujiannan/PycharmProjects/pythonProject/Web安全之机器学习入门/code/11-1.py", line 95, inL, suppData = apriori(myDat, 0.5) File "C:/Users/liujiannan/PycharmProjects/pythonProject/Web安全之机器学习入门/code/11-1.py", line 45, in apriori L1, suppData = scanD(D, C1, minSupport) File "C:/Users/liujiannan/PycharmProjects/pythonProject/Web安全之机器学习入门/code/11-1.py", line 17, in scanD numItems = float(len(D)) TypeError: object of type 'map' has no len()
修改前
C1 = createC1(dataSet) D = map(set, dataSet)
修改如下
C1 = list(createC1(dataSet)) D = list(map(set, dataSet))
2.完整源码如下所示
def createC1(dataSet): C1 = [] for transaction in dataSet: for item in transaction: if [item] not in C1: C1.append([item]) C1.sort() return map(frozenset, C1) def scanD(D, Ck, minSupport): ssCnt = {} for tid in D: for can in Ck: if can.issubset(tid): ssCnt[can] = ssCnt.get(can, 0) + 1 numItems = float(len(list(D))) retList = [] supportData = {} for key in ssCnt: support = ssCnt[key] / numItems if support >= minSupport: retList.insert(0, key) supportData[key] = support return retList, supportData def aprioriGen(Lk, k): retList = [] lenLk = len(Lk) for i in range(lenLk): for j in range(i + 1, lenLk): L1 = list(Lk[i])[: k - 2]; L2 = list(Lk[j])[: k - 2]; L1.sort(); L2.sort() if L1 == L2: retList.append(Lk[i] | Lk[j]) return retList def apriori(dataSet, minSupport=0.5): C1 = list(createC1(dataSet)) D = list(map(set, dataSet)) L1, suppData = scanD(D, C1, minSupport) L = [L1] k = 2 while (len(L[k - 2]) > 0): Ck = aprioriGen(L[k - 2], k) Lk, supK = scanD(D, Ck, minSupport) suppData.update(supK) L.append(Lk) k += 1 return L, suppData def calcConf(freqSet, H, supportData, brl, minConf=0.7): prunedH = [] for conseq in H: conf = supportData[freqSet] / supportData[freqSet - conseq] if conf >= minConf: print(freqSet - conseq, '-->', conseq, 'conf:', conf) brl.append((freqSet - conseq, conseq, conf)) prunedH.append(conseq) return prunedH def rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7): m = len(H[0]) if len(freqSet) > m + 1: Hmp1 = aprioriGen(H, m + 1) Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf) if len(Hmp1) > 1: rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf) def generateRules(L, supportData, minConf=0.7): bigRuleList = [] for i in range(1, len(L)): for freqSet in L[i]: H1 = [frozenset([item]) for item in freqSet] if i > 1: rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf) else: calcConf(freqSet, H1, supportData, bigRuleList, minConf) return bigRuleList if __name__ == '__main__': myDat = [ [ 1, 3, 4 ], [ 2, 3, 5 ], [ 1, 2, 3, 5 ], [ 2, 5 ] ] L, suppData = apriori(myDat, 0.5) rules = generateRules(L, suppData, minConf=0.7) print('rules:n', rules)
3.测试结果
frozenset({5}) --> frozenset({2}) conf: 1.0 frozenset({2}) --> frozenset({5}) conf: 1.0 frozenset({1}) --> frozenset({3}) conf: 1.0 rules: [(frozenset({5}), frozenset({2}), 1.0), (frozenset({2}), frozenset({5}), 1.0), (frozenset({1}), frozenset({3}), 1.0)]
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)