什么是可微?

什么是可微?,第1张

函数y=f(x)在x的邻域内有定义,x0及x0+Δx在此区间内。如果函数的增量Δy=f(x0+Δx)−f(x0)可表示为Δy=AΔx+o(Δx)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy=AΔx。

这个是高等数学书中对函数可微的定义。

拼音:kěwēi

造句:

1、愿天下考研人:忧愁是可微的,快乐是可积的,在未来趋于正无穷的日子里,幸福是连续的,对你的祝福是可导的且大于零,祝你每天快乐的复合函数总是最大值。

2、忧愁是可微分的,快乐是可积分的,在未来趋近于正无穷的日子里,对你的祝福是可导并大于零的,愿给你的幸福复合函数永远取最大值。

3、对于拟微分为有限点集凸包的拟可微函数,给出了判别其在任一点处是否可微的一种算法。

4、由于对门限参数和同积向量似然函数既不可微也不光滑,不能直接运用传统的极大似然估计。

5、本文讨论了二维可微同胚映射的浑沌现象,并给出一个更为直接的,易于验证的充分条件。

设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A为不依赖Δx的常数,ο(Δx)是比Δx高阶的无穷小。

则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x= x0时,则记作dy∣x=x0。

必要条件:

1、若函数在某点可微分,则函数在该点必连续;

2、若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

充分条件:

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5794389.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-01-31
下一篇 2023-01-31

发表评论

登录后才能评论

评论列表(0条)

保存