sin是三角函数的正炫函数,sin30º即为在直角三角形中该角大小为30º的正炫,值的计算为:该角所对的直角边比上斜边,结果是½。
在直角三角形中,∠α(不是直角)的对边与斜边的比叫做∠α的正弦,记作sinα,即sinα=∠α的对边/∠α的斜边 。sinα在拉丁文中记做sinus。
在古代的说法当中,正弦是勾与弦的比例。 古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。 股就是人的大腿,古人称直角三角形中长的那个直角边为“股”。
正弦是∠α(非直角)的对边与斜边的比,余弦是∠α(非直角)的邻边与斜边的比。
勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
扩展资料:
正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a/sin A=b/sin B=c/sin C
正弦函数的定理在三角形求面积中的运用-
S△=c²sinAsinB/2sin(A+B)(S△为三角形的面积,三个角为∠A∠B∠C,对边分别为a,b,c,)
S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)
另外,当sin值在180~360之间会出现负数,在360以上则会重复。
三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即在余弦定理中,令 ,这时 ,所以 。
(1)已知三角形的三条边长,可求出三个内角;
(2)已知三角形的两边及夹角,可求出第三边;
(3)已知三角形两边及其一边对角,可求其它的角和第三条边。
参考资料:百度百科---sin
sin30°=1/2;sin30=-0.988
cos30=0.154;cos30°=√3/2
tan30=-6.405;tan30°=√3/3
sin45=0.851;sin45°=√2/2
cos45=0.525;cos45°=sin45°=√2/2
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=√3/2
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=√3
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
正弦函数的意义:
一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。
通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]。
1、tan30度:√3/3
2、tan45度:1
3、tan60度:√3
4、tan90度:不存在
5、sin30度 :1/2
6、sin45度:√2/2
7、sin60度 :√3/2
8、sin90度 :1
9、cos30度: √3/2
10、cos45度 :√2/2
11、cos60度 :1/2
12、cos90度:0
依据:
在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。
对∠BAC而言,对边(opposite)a=BC、斜边(hypotenuse)c=AB、邻边(adjacent)b=AC,则存在以下关系:
1、正弦函数
缩写:sin
值:a/c
语言描述:∠A的对边比斜边
2、余弦函数
缩写:cos
值:b/c
语言描述:∠A的邻边比斜边
3、正切函数
缩写:tan
值:a/b
语言描述:∠A的对边比邻边
4、余切函数
缩写:cot
值:b/a
语言描述:∠A的邻边比对边
5、正割函数
缩写:sec
值:c/b
语言描述:∠A的斜边比邻边
6、余割函数
缩写:csc
值:c/a
语言描述:∠A的斜边比对边
扩展资料:
三角函数常用公式:
1、万能公式
sina=[2tan(a/2)]/[1+tan²(a/2)]
cosa=[1-tan²(a/2)]/[1+tan²(a/2)]
tana=[2tan(a/2)]/[1-tan²(a/2)]
2、降幂公式
sin²α=[1-cos(2α)]/2
cos²α=[1+cos(2α)]/2
tan²α=[1-cos(2α)]/[1+cos(2α)]
3、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
参考资料:百度百科-三角函数
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)