如今,几乎所有的太阳能电池都是由高纯度硅制成的。这是一项成熟的技术,近年来由于规模经济,制造成本大幅下降。然而,硅的效率有一个上限。一个由Ted Sargent教授领导的团队正在研究互补材料,这种材料可以通过吸收硅所不吸收的波长来增强硅的太阳能收集潜力。
Sargent教授说:“我们实验室所追求的两项技术是钙钛矿晶体和量子点。”这两种方法都适用于溶液处理。想象一下,一种“太阳能墨水”可以印刷到柔性塑料上,制造出低成本、可弯曲的太阳能电池。我们还可以在硅太阳能电池的前后阶段组合它们,以进一步提高它们的效率。”
钙钛矿和量子点面临的主要挑战之一是稳定性。在室温下,某些类型的钙钛矿经历了3D晶体结构的调整,使它们变得透明——它们不再完全吸收太阳辐射。
对于量子点来说,必须覆盖一层被称为钝化层的薄层。这个层——只有一个分子厚——可以防止量子点互相粘在一起。但是超过100摄氏度的温度会破坏钝化层,导致量子点聚集或聚集在一起,破坏它们采光的能力。
发表在《自然》杂志上的一篇论文中,Sargent实验室的一组研究人员报告了一种结合钙钛矿和量子点的方法,这种方法可以稳定两者。
该论文的主要作者刘梦霞说:“在我们这样做之前,人们通常试图分别应对这两个挑战。”
“研究已经证明混合结构的成功发展,这种混合结构结合了钙钛矿和量子点,这启发我们考虑到,如果两种材料共享相同的晶体结构,它们可能会彼此稳定。”刘说,她现在是剑桥大学的博士后研究员。
刘和他的团队建造了两种混合材料。一种主要是量子点,其体积约为15%的钙钛矿,用于将光转化为电能。另一种主要是以体积计量子点小于15%的钙钛矿,更适合将电转化为光,例如,作为发光二极管(LED)的一部分。
研究小组能够证明,富含钙钛矿的材料在环境条件(25摄氏度和30%湿度)下保持稳定6个月,比仅由同一钙钛矿组成的材料寿命长约10倍。对于量子点材料,当加热到100℃时,纳米颗粒的聚集度比未经钙钛矿稳定的纳米颗粒低5倍。
“这很好地证明了我们的假设,”刘说。这是一个超出我们预期的令人印象深刻的结果。
新的研究结果证明了这类混合材料可以提高材料的稳定性。在未来,刘希望太阳能电池制造商能够采取她的想法,并进一步改进,以创造新的太阳能电池技术,满足所有与传统硅相同的标准。
“工业研究人员可以用不同的化学元素来形成钙钛矿或量子点,”刘说。我们所展示的是,这是一个有前途的策略,可以改善这类结构的稳定性。”
“作为太阳能材料,钙钛矿已经显示出巨大的潜力;但需要基本的解决方案,将其转化为稳定和坚固的材料,以满足可再生能源行业的苛刻要求,”杰弗里C.格罗斯曼说,他是莫顿和克莱尔·古尔德,环境系统的家庭教授,同时也是麻省理工学院材料科学与工程系德学院的一名教授。麻省理工学院此次并未参与研究。多伦多的研究显示了一个令人兴奋的新途径,以促进对稳定钙钛矿晶体相的理解和成就。”
刘将这一发现部分归功于团队中的协作环境,其中包括来自许多学科的研究人员,包括化学、物理和她自己的材料科学领域。
她说:“钙钛矿和量子点具有独特的物理结构,这些材料之间的相似性通常被忽视。这一发现表明,当我们结合来自不同领域的想法时,可能会发生什么意想不到的火花。”
量子点一般是半导体,具有量子限域效应,而纳米材料比较广泛,尺寸在纳米级的材料都可以。量子点是纳米材料的一种,一般指半导体小于波尔激子半径以下时,有量子尺寸效应
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
只有其尺寸小于材料的波尔激子半径时,才能称为量子点,量子点具有量子限域效应,所以其能带可调,进而吸收波长具有蓝移特性。
区别与联系:纳米材料包括量子点,这是从范畴上的理解。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)