exp,高等数学里以自然常数e为底的指数函数。用途:用来表示自然常数e的指数。
例:EXP{F(X)}是e的F(X)次方。
exp(2)就是e的平方。
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为e的x次方,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
扩展资料:
作为实数变量x的函数, y=e的x次方的图像总是正的(在x轴之上)并递增(从左向右看)。
它永不触及x轴,尽管它可以无限程度地靠近x轴(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。
参考资料:百度百科---exp
是高等数学里以自然常数e为底的指数函数。
指数函数应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于2.718281828,还称为欧拉数。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。在x处的切线的斜率等于此处y的值乘上lna。
作为实数变量x的函数, y=e的x次方的图像总是正的(在x轴之上)并递增(从左向右看)。
它永不触及x轴,尽管它可以无限程度地靠近x轴(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数x上。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)