第一步:画一个任意正方形ABCD(比如边长为2) ;
第二步:取BC的中心点N,连接ND;
第三步:以N为圆心,ND 长为半径画弧,交BC的延长线于E;
第四步:过E做EF垂直于AD交AD的延长线于F。
矩形DCEF即为黄金矩形,即长是宽的1.618倍。而且如果将矩形DCEF裁去一个正方形,剩下的矩形仍然是一个黄金矩形,如此一直分割下去!比例相同。
扩展资料:
黄金矩形(Golden Rectangle)的长宽之比为黄金分割率,换言之,矩形的短边为长边的 0.618倍 。黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。
在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子。蒙娜丽莎的脸符合黄金矩形,同样也应用了该比例布局。
这是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。这其实是一个数字的比例关系。
即把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为1.618:1或1:0.618,也就是说长段的平方等于全长与短段的乘积。
0.618,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。
参考资料来源:百度百科-黄金矩形
国外,有位画家举办过一次画展,所有的画面都是不同比例的矩形,有的狭长,有的正方。据统计数字表明,观众最喜爱的宽与长之比为g的矩形画面。人们称这种矩形为“黄金矩形”。
黄金矩形有个奇特的性质,如果矩形ABCD是黄金矩形,即DA∶AB=g,在它的内部截去一个正黄金矩形。这个过程继续下去,还可以得到一系列的黄金矩形。这个美妙的结论,请你自己证明吧。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)