假设某质点做圆周运动,在Δt时间内转过的角为Δθ. Δθ与Δt的比值,描述了物体绕圆心运动的快慢。
角速度ω是矢量。按右手螺旋定则,大拇指方向为ω方向。当质点作逆时针旋转时,ω向上;作顺时针旋转时,ω向下。
扩展资料:
角坐标φ和角位移Δφ不是矢量。令Δt→0,则角位移Δφ以零为极限,称为无限小角位移。无限小角位移忽略高阶无穷小量后称为微分角位移。
右手系改为左手系时,角速度反向.其本质是二阶张量(Ω),而一般矢量的本质是一阶张量,因此,矢量是角速度的简便表达,张量是角速度的准确表达。
ω=2π/T因为:连接运动质点和圆心的半径在单位时间内转过的弧度叫做“角速度”。它是描述物体转动或一质点绕另一质点转动的快慢和转动方向的物理量。
首先:360°/T 也是角速度,不过单位是 °/s 不是国际单位。此时要转化为国际单位:也就是 一弧度(1rad)的圆等于 一个圆以半径的弧长所对应的角度为一弧度。
l=απR/180° (弧长与角度的关系)α为弧长连接圆心的夹角
由于l=r ( 一个圆以半径的弧长所对应的角度为一弧度。)
所以计算约分后得:180°/π=α
此时180°/π=一弧度 (国际定义)
则:360°/T除上180°/π就可以算出有几个一弧度的角
约分后得:2π除以周期
连接运动质点和圆心的半径在单位时间内转过的弧度叫做“角速度”。角速度的单位是弧度/秒,读作弧度每秒。它是描述物体转动或一质点绕另一质点转动的快慢和转动方向的物理量。物体运动角位移的时间变化率叫瞬时角速度(亦称即时角速度),单位是弧度•秒-1,方向用右手螺旋定则决定。对于匀速圆周运动,角速度ω是一个恒量,可用运动物体与圆心联线所转过的角位移Δθ和所对应的时间Δt之比表示ω=△θ/△t。角速度是在物理学中描述物体转动时在单位时间内转过角度以及转动方向的矢量(更准确地说,是伪矢量),通常用希腊字母Ω或ω来表示。在国际单位制中,单位是“弧度/秒”,但是也可以以其他单位来作度量,例如:“度/秒”、"度/分",“度/小时”
等等。当在度量单位时间内的转动周数时(例如:每分钟转动周数),则以转速来描述转动速度快慢。角速度的方向垂直于转动平面,可通过右手定则来确定
角速度还可以通过V(线速度)/R(半径)求出
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)