从1一直加到100有两种简便算法:
1、求平均数的算法。
1到100共100个数字,而且他们是等差数列,所以只需要将1+100除以 2,就可以得到平均数,再乘以位数,则得到结果,(1+100)/ 2 x 100
=50.5 x 100
=5050
2、利用等差数列的求和公式直接求和。
等差数列的公式是:(首项+末项)x 项数/2
1到100共100个数,首项为1,公差为1,末项为100,代入公式就是
(1+100)x 100 / 2
=101x100/2
=10100/2
=5050
扩展资料:
等差数列的算法:等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:首项×项数+【项数(项数-1)×公差】/2或【(首项+末项)×项数】/ 2。
1加到100的计算公式:(1+100)*100/2=5050。
1加到100公式推导过程:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)+(2+99)+(3+98)+(4+97)+(5+95)+......(47+54)+(48+53)+(49+52)+(50+51)
=101+101+101+101+......+101+101+101+101(共50个101)
=50×101
=5050
因此得到简便算法:1+2+3+4+5+6+7+8+9+10+11+......90+91+92+93+94+95+96+97+98+99+100
=(1+100)×100÷2
=50×101
=5050
加法算式:加法各部分间的关系就是指两个加数与和之间的相互关系。
最基本的关系是:加数+加数=和,即:和=加数+加数。
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)。
项数=(末项-首项来)÷公差+1。
末项=首项+(项数-1)×公差。
前n项的和Sn=首项×n+项数(项数-1)公差/2。
第n项的值an=首项+(项数-1)×公差。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)