函数收敛的定义是什么?

函数收敛的定义是什么?,第1张

收敛函数是由对函数在某点收敛定义引申出来的函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值若函数在定义域的每一点都收敛,则通常称函数是收敛的有界和收敛不一样。

函数收敛与数列收敛类似,柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1、x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

相关介绍:

一般的级数u1+u2+...+un+...,它的各项为任意级数,如果级数Σu各项的绝对值所构成的正项级数Σ∣un∣收敛,则为级数Σun绝对收敛。如果级数Σun收敛,而Σ∣un∣发散,则称级数Σun条件收敛。

条件收敛是技术给定其他条件一样的话,人均产出低的国家,相对于人均产出高的国家,有着较高的人均产出增长率,一个国家的经济在远离均衡状态时,比接近均衡状态时,增长速度快。

函数收敛的意思:是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。

在一些一般性叙述中,收敛和收敛性这两个词(在外语中通常是同一个词)有时泛指函数或数列是否有极限的性质,或者按哪一种意义(什么极限过程)有极限。

在这个意义下,数学分析中所讨论的收敛性的不同意义(不同类型的极限过程)大致有:对数列(点列)只讨论当其项序号趋于无穷的收敛性。

对一元和多元函数最基本的有自变量趋于定值(定点)的和自变量趋于无穷的这两类收敛性;对多元函数还有沿特殊路径的和累次极限意义下的收敛性;对函数列(级数)有逐点收敛和一致收敛。

拉克斯等价性定理:

揭示差分方程相容性、稳定性与收敛性三者之间关系的重要定理.该定理表述为:对于适定的线性偏微分方程组初值问题,一个与之相容的线性差分格式收敛的充分必要条件是该格式是稳定的。

该定理以美国数学家拉克斯(Lax,P.D)命名,利用这一定理,可把困难的收敛性研究转化成对相容性与稳定性的讨论。

收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。

一个函数收敛则该函数必定有界,而一个函数有界则不能推出该函数收敛。要说明的是,数列有界是全域有界,而函数有界仅仅是在去心邻域内局部有界。

扩展资料

函数项级数收敛域求解思路

因为函数项级数的收敛域其实就是由所有收敛点构成的,而对于每个收敛点对应的函数项级数的收敛性的判定。

其实对应的就是常值级数收敛性的判定,所以函数项级数的收敛域的计算一般基于常值级数判定的方法,常用的基于取项的绝对值的比值审敛法与根值判别法。

参考资料来源:百度百科-收敛


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5866581.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-25
下一篇 2023-02-25

发表评论

登录后才能评论

评论列表(0条)

保存