马丁(Martin)和欣革(Synge)最早提出塔板理论,将色谱柱比作蒸馏塔,把一根连续的色谱柱设想成由许多小段组成。在每一小段内,一部分空间为固定相占据,另一部分空间充满流动相。组分随流动相进入色谱柱后,就在两相间进行分配。并假定在每一小段内组分可以很快地在两相中达到分配平衡,这样一个小段称作一个理论塔板(theoretical
plate),一个理论塔板的长度称为理论塔板高度(theoretical
plate
height)H。经过多次分配平衡,分配系数小的组分,先离开蒸馏塔,分配系数大的组分后离开蒸馏塔。由于色谱柱内的塔板数相当多,因此即使组分分配系数只有微小差异,仍然可以获得好的分离效果。
马丁(Martin)和欣革(Synge)最早提出塔板理论,将色谱柱比作蒸馏塔,把一根连续的色谱柱设想成由许多小段组成。在每一小段内,一部分空间为固定相占据,另一部分空间充满流动相。组分随流动相进入色谱柱后,就在两相间进行分配。并假定在每一小段内组分可以很快地在两相中达到分配平衡,这样一个小段称作一个理论塔板(theoretical plate),一个理论塔板的长度称为理论塔板高度(theoretical plate height)H。经过多次分配平衡,分配系数小的组分,先离开蒸馏塔,分配系数大的组分后离开蒸馏塔。由于色谱柱内的塔板数相当多,因此即使组分分配系数只有微小差异,仍然可以获得好的分离效果。
根据塔板理论,待分离组分流出色谱柱时的浓度沿时间呈现二项式分布,当色谱柱的塔板数很高的时候,二项式分布趋于正态分布。则流出曲线上组分浓度与时间的关系可以表示为:
c_t=c_0/(σ*√(2π))*e^(-(t-t_R)^2/(2*σ^2))
这一方程称作流出曲线方程,式中c_t为t时刻的组分浓度;c_0为组分总浓度,即峰面积;σ为半峰宽,即正态分布的标准差;t_R为组分的保留时间。
根据流出曲线方程人们定义色谱柱的理论塔板高度为单位柱长度的色谱峰方差:
H=\frac{\sigma^2}
理论塔板高度越低,在单位长度色谱柱中就有越高的塔板数,则分离效果就越好。决定理论塔板高度的因素有:固定相的材质、色谱柱的均匀程度、流动相的理化性质以及流动相的流速等。
塔板理论是基于热力学近似的理论,在真实的色谱柱中并不存在一片片相互隔离的塔板,也不能完全满足塔板理论的前提假设。如塔板理论认为物质组分能够迅速在流动相和固定相之间建立平衡,还认为物质组分在沿色谱柱前进时没有径向扩散,这些都是不符合色谱柱实际情况的,因此塔板理论虽然能很好地解释色谱峰的峰型、峰高,客观地评价色谱柱地柱效,却不能很好地解释与动力学过程相关的一些现象,如色谱峰峰型的变形、理论塔板数与流动相流速的关系等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)