π=3.1415926535897932384626..........;
是一个无限不循环小数,所以是无理数。
扩展资料:
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。
当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。
必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。
无理数也可以通过非终止的连续分数来处理。如圆周率、√2等。
有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
因此,有理数也可以定义为十进制循环小数。
参考资料来源:百度百科-无理数
参考资料来源:百度百科-有理数
π不是有理数。
因为,根据有理数的定义:
有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。
而π=3.1415926...是无限不循环小数,不在有理数的范围。
扩展资料:无限不循环小数又称为无理数。它不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
参考资料:无理数-百度百科
圆周率π是无理数。证明如下:
假设π是有理数,则π=a/b,(a,b为自然数)
令f(x)=(x^n)[(a-bx)^n]/(n!)
若0<x<a/b,则
0<f(x)<(π^n)(a^n)/(n!)
0<sinx<1
以上两式相乘得:
0<f(x)sinx<(π^n)(a^n)/(n!)
当n充分大时,,在[0,π]区间上的积分有
0<∫f(x)sinxdx <[π^(n+1)](a^n)/(n!)<1 …………(1)
又令:F(x)=f(x)-f"(x)+[f(x)]^(4)-…+[(-1)^n][f(x)]^(2n),(表示偶数阶导数)
由于n!f(x)是x的整系数多项式,且各项的次数都不小于n,故f(x)及其各阶导数在x=0点处的值也都是整数,因此,F(x)和F(π)也都是整数。
又因为
d[F'(x)sinx-F(x)conx]/dx
=F"(x)sinx+F'(x)cosx-F'(x)cosx+F(x)sinx
=F"(x)sinx+F(x)sinx
=f(x)sinx
所以有:
∫f(x)sinxdx=[F'(x)sinx-F(x)cosx],(此处上限为π,下限为0)
=F(π)+F(0)
上式表示∫f(x)sinxdx在[0,π]区间上的积分为整数,这与(1)式矛盾。所以π不是有理数,又它是实数,故π是无理数。
扩展资料圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。
参考资料:百度百科——圆周率
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)