三角形中位线性质是什么?

三角形中位线性质是什么?,第1张

中位线的性质:

(1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

(2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。

注意:

(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它对边的中点,而三角形中位线是连接三角形两边中点的线段。

(2)梯形的中位线是连接两腰中点的线段而不是连接两底中点的线段。

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线。

中位线的判断方法:

1,根据定义:三角形两边中点之间的线段为三角形的中位线。

2.经过三角形一边中点与另一边平行的直线与第三边相交,交点与中点之间的线段为三角形的中位线。

3.端点在三角形的两边上与第三边平行且等于第三边的一半的线段为三角形的中位线。

中位线

1.中位线概念:

(1)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.

(2)梯形中位线定义:连结梯形两腰中点的线段叫做梯形的中位线.

注意:

(1)要把三角形的中位线与三角形的中线区分开.三角形中线是连结一顶点和它的对边中点的 线段,而三角形中位线是连结三角形两边中点的线段.

(2)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段.

(3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时梯形的中位线就变成三角形的中位线.

2.中位线定理:

(1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

(2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

中位线是三角形与梯形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.

例1 如图2-53所示.△ABC中,AD⊥BC于D,E,F,△ABC的面积.

分析 由条件知,EF,EG分别是三角形ABD和三角形ABC的中位线.利用中位线的性质及条件中所给出的数量关系,不难求出△ABC的高AD及底边BC的长.

解 由已知,E,F分别是AB,BD的中点,所以,EF是△ABD的一条中位线,所以

由条件AD+EF=12(厘米)得

EF=4(厘米),

从而 AD=8(厘米),

由于E,G分别是AB,AC的中点,所以EG是△ABC的一条中位线,所以

BC=2EG=2×6=12(厘米),

显然,AD是BC上的高,所以

例2 如图 2-54 所示.△ABC中,∠B,∠C的平分线BE,CF相交于O,AG⊥BE于G,AH⊥CF于H.

(1)求证:GH‖BC;

(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH.

分析 若延长AG,设延长线交BC于M.由角平分线的对称性可以证明△ABG≌△MBG,从而G是AM的中点;同样,延长AH交BC于N,H是AN的中点,从而GH就是△AMN的中位线,所以GH‖BC,进而,利用△ABC的三边长可求出GH的长度.

(1)证 分别延长AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以

△ABG≌△MBG(ASA).

从而,G是AM的中点.同理可证

△ACH≌△NCH(ASA),

从而,H是AN的中点.所以GH是△AMN的中位线,从而,HG‖MN,即

HG‖BC.

(2)解 由(1)知,△ABG≌△MBG及△ACH≌△NCH,所以

AB=BM=9厘米,AC=CN=14厘米.

又BC=18厘米,所以

BN=BC-CN=18-14=4(厘米),

MC=BC-BM=18-9=9(厘米).

从而

MN=18-4-9=5(厘米),

说明 (1)在本题证明过程中,我们事实上证明了等腰三角形顶角平分线三线合一(即等腰三角形顶角的平分线也是底边的中线及垂线)性质定理的逆定理:“若三角形一个角的平分线也是该角对边的垂线,则这条平分线也是对边的中线,这个三角形是等腰三角形”.

(2)“等腰三角形三线合一定理”的下述逆命题也是正确的:“若三角形一个角的平分线也是该角对边的中线,则这个三角形是等腰三角形,这条平分线垂直于对边”.同学们不妨自己证明.

(3)从本题的证明过程中,我们得到启发:若将条件“∠B,∠C的平分线”改为“∠B(或∠C)及∠C(或∠B)的外角平分线”(如图2-55所示),或改为“∠B,∠C的外角平分线”(如图2-56所示),其余条件不变,那么,结论GH‖BC仍然成立.同学们也不妨试证.

例3 如图2-57所示.P是矩形ABCD内的一点,四边形BCPQ是平行四边形,A′,B′,C′,D′分别是AP,PB,BQ,QA的中点.求证:A′C′=B′D′.

分析 由于A′,B′,C′,D′分别是四边形APBQ的四条边AP,PB,BQ,QA的中点,有经验的同学知道A′B′C′D′是平行四边形,A′C′与B′D′则是它的对角线,从而四边形A′B′C′D′应该是矩形.利用ABCD是矩形的条件,不难证明这一点.

证 连接A′B′,B′C′,C′D′,D′A′,这四条线段依次是△APB,△BPQ,△AQB,△APQ的中位线.从而

A′B′‖AB,B′C′‖PQ,

C′D′‖AB,D′A′‖PQ,

所以,A′B′C′D′是平行四边形.由于ABCD是矩形,PCBQ是平行四边形,所以

AB⊥BC,BC‖PQ.

从而

AB⊥PQ,

所以 A′B′⊥B′C′,

所以四边形A′B′C′D′是矩形,所以

A′C′=B′D′. ①

说明 在解题过程中,人们的经验常可起到引发联想、开拓思路、扩大已知的作用.如在本题的分析中利用“四边形四边中点连线是平行四边形”这个经验,对寻求思路起了不小的作用.因此注意归纳总结,积累经验,对提高分析问题和解决问题的能力是很有益处的.

例4 如图2-58所示.在四边形ABCD中,CD>AB,E,F分别是AC,BD的中点.求证:

分析 在多边形的不等关系中,容易引发人们联想三角形中的边的不形中构造中位线,为此,取AD中点.

证 取AD中点G,连接EG,FG,在△ACD中,EG是它的中位线(已知E是AC的中点),所以

同理,由F,G分别是BD和AD的中点,从而,FG是△ABD的中位线,所以

在△EFG中,

EF>EG-FG. ③

由①,②,③

例5 如图2-59所示.梯形ABCD中,AB‖CD,E为BC的中点,AD=DC+AB.求证:DE⊥AE.

分析 本题等价于证明△AED是直角三角形,其中∠AED=90°.

在E点(即直角三角形的直角顶点)是梯形一腰中点的启发下,添梯形的中位线作为辅助线,若能证明,该中位线是直角三角形AED的斜边(即梯形另一腰)的一半,则问题获解.

证 取梯形另一腰AD的中点F,连接EF,则EF是梯形ABCD的中位线,所以

因为AD=AB+CD,所以

从而

∠1=∠2,∠3=∠4,

所以∠2+∠3=∠1+∠4=90°(△ADE的内角和等于180°).从而

∠AED=∠2+∠3=90°,

所以 DE⊥AE.

例6 如图2-60所示.△ABC外一条直线l,D,E,F分别是三边的中点,AA1,FF1,DD1,EE1都垂直l于A1,F1,D1,E1.求证:

AA1+EE1=FF1+DD1.

分析 显然ADEF是平行四边形,对角线的交点O平分这两条对角线,OO1恰是两个梯形的公共中位线.利用中位线定理可证.

证 连接EF,EA,ED.由中位线定理知,EF‖AD,DE‖AF,所以ADEF是平行四边形,它的对角线AE,DF互相平分,设它们交于O,作OO1⊥l于O1,则OO1是梯形AA1E1E及FF1D1D的公共中位线,所以

即 AA1+EE1=FF1+DD1.

练习十四

1.已知△ABC中,D为AB的中点,E为AC上一点,AE=2CE,CD,BE交于O点,OE=2厘米.求BO的长.

2.已知△ABC中,BD,CE分别是∠ABC,∠ACB的平分线,AH⊥BD于H,AF⊥CE于F.若AB=14厘米,AC=8厘米,BC=18厘米,求FH的长.

3.已知在△ABC中,AB>AC,AD⊥BC于D,E,F,G分别是AB,BC,AC的中点.求证:∠BFE=∠EGD.

4.如图2-61所示.在四边形ABCD中,AD=BC,E,F分别是CD,AB的中点,延长AD,BC,分别交FE的延长线于H,G.求证:∠AHF=∠BGF.

5.在△ABC中,AH⊥BC于H,D,E,F分别是BC,CA,AB的中点(如图2-62所示).求证:∠DEF=∠HFE.

6.如图2-63所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求证:AP=AQ.

7.已知在四边形ABCD中,AD>BC,E,F分别是AB,CD


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5882506.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-02
下一篇 2023-03-02

发表评论

登录后才能评论

评论列表(0条)

保存