均方误差与均方根误差是一个意思吗?

均方误差与均方根误差是一个意思吗?,第1张

标准差(Standard Deviation),中文环境中又常称均方差,但不同于均方根误差,标准差是数据偏离均值的平方和平均后的方根,用σ表示,标准差是方差的算术平方根。

一、两者的定义如下:

1、均方误差(mean-square error, MSE)是反映估计量与被估计量之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为估计量t的均方误差。它等于σ2+b2,其中σ2与b分别是t的方差与偏倚。

2、均方根误差是预测值与真实值偏差的平方与观测次数n比值的平方根,在实际测量中,观测次数n总是有限的,真值只能用最可信赖(最佳)值来代替。

二、从上面定义我们可以得到以下几点:

1、均方差就是标准差,标准差就是均方差;

2、均方根误差不同于均方差;

3、均方根误差是各数据偏离真实值的距离平方和的平均数的开方。

扩展资料

一、均方根误差公式

S={[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/N}^0.5(x为平均数,N为样本个数)此公式中的X也就是所谓的平均数应改为x'1,x'2......(即真实值)。均方根误差算的是观测值与其真值,或者观测值与其模拟值之间的偏差,而不是观测值与其平均值之间的偏差。

二、区别

均方差(标准差)是数据序列与均值的关系,而均方根误差是数据序列与真实值之间的关系。

因此,标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。

参考资料来源:百度百科-均方误差

参考资料来源:百度百科-均方根误差

mse均方误差计算公式:mse=(G+A)/n。

均方误差(mean-squareerror,MSE)是反映估计量与被估计量之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的数学期望,称为估计量t的均方误差。

使用注意事项

RMSE的存在是开完根号之后,误差的结果就和数据是一个单位级别的,可以更好的描述数据!RMSE/MSE对一组测量中对特大/特小误差反映特别敏感【对离群值,均值和标度很敏感】,这种局限性常常发生在短时间内变化比较大的数据上,如风电预测,访问量预测等。

均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“平均误差”的一种较为方便的方法,MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。

误差平方和又称残差平方和、组内平方和等,根据n个观察值拟合适当的模型后,余下未能拟合部份(ei=yi一y平均)称为残差,其中y平均表示n个观察值的平均值,所有n个残差平方之和称误差平方和。

在回归分析中通常用SSE表示,其大小用来表明函数拟合的好坏。将残差平方和除以自由度n-p-1(其中p为自变量个数)可以作为误差方差σ2的无偏估计,通常用来检验拟合的模型是否显著。

扩展资料

当其他量相等时,无偏估计量比有偏估计量更好一些,但在实践中,并不是所有其他统计量的都相等,于是也经常使用有偏估计量,一般偏差较小。

当使用一个有偏估计量时,也会估计它的偏差。有偏估计量可能用于以下原因:由于如果不对总体进一步假设,无偏估计量不存在或很难计算(如标准差的无偏估计);由于估计量是中值无偏的,却不是均值无偏的(或反之)。

由于一个有偏估计量较之无偏估计量(特别是收缩估计量)可以减小一些损失函数(尤其是均方差);或者由于在某些情况下,无偏的条件太强,而这些无偏估计量没有太大用处。

此外,在非线性变换下均值无偏性不会保留,不过中值无偏性会保留;例如样本方差是总体方差的无偏估计量,但它的平方根标准差则是总体标准差的有偏估计量。

参考资料来源:百度百科-均方误差

参考资料来源:百度百科-误差平方和


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5884408.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-03
下一篇 2023-03-03

发表评论

登录后才能评论

评论列表(0条)

保存