三角形重心的六条性质是什么?

三角形重心的六条性质是什么?,第1张

三角形重心的六条性质是:

1、重心顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。

5、重心是三角形内到三边距离之积最大的点。

6、三角形ABC的重心为G,点P为其内部任意一点,则3PG05(AP05+BP05+CP05)-1/3(AB05+BC05+CA05)。

三角形的性质:

一个三角形的三个内角中最少有两个锐角。在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

三角形任意两边之和大于第三边,任意两边之差小于第三边。在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。

直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。

勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。

三角形重心是三角形三条中线的交点。

性质一、重心到顶点的距离与重心到对边中点的距离之比为2:1。

性质二、重心和三角形3个顶点组成的3个三角形面积相等。

性质三、重心到三角形3个顶点距离平方的和最小。 (等边三角形)

性质四、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。

性质五、三角形内到三边距离之积最大的点。

性质六、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立。

性质七、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)

关于重心的顺口溜:

三条中线必相交,交点命名为重心

重心分割中线段,线段之比二比一;

扩展资料:

三角形的五心之其他四心:

内心:三角形三边的垂直平分线的交点叫三角形的外心.(外接圆的圆心)

外心:三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。

垂心:三角形的垂心是三角形三边上的高的交点(通常用H表示)。

旁心: 三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。

重心的几条性质 :

1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.重心到三角形3个顶点距离的平方和最小。

4.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均。

5.重心是三角形内到三边距离之积最大的点。

6.三角形ABC的重心为G,点P为其内部任意一点,则3PG²=(AP²+BP²+CP²)-1/3(AB²+BC²+CA²)。

7.在三角形ABC中,过重心G的直线交AB、AC所在直线分别于P、Q,则 AB/AP+AC/AQ=3

8.从三角形ABC的三个顶点分别向以他们的对边为直径的圆作切线,所得的6个切点为Pi,则Pi均在以重心G为圆心,r=1/18(AB²+BC²+CA²)为半径的圆周上。

9、G为三角形ABC的重心,P为三角形ABC所在平面上任意一点,则PA²+PB²+PC²=GA²+GB²+GC²+3PG²。

扩展资料:

重心确定方法

1,组合法

工程中有些形体虽然比较复杂,但往往是由一些简单形体的组合,这些形体的重心通常是已知的或易求的。

2,负面积法

如果在规则形体上切去一部分,例如钻一个孔等,则在求这类形体的重心时,可以认为原形体是完整的,只是把切去的部分视为负值(负体积或负面积)。

3,实验法(平衡法)

如物体的形状不是由基本形体组成,过于复杂或质量分布不均匀,其重心常用实验方法来确定。主要包括悬挂法和称重法。

参考资料:百度百科--重心


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5885814.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-04
下一篇 2023-03-04

发表评论

登录后才能评论

评论列表(0条)

保存