索引是一种特殊的文件(InnoDB 数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。索引不是万能的,索引可以加快数据检索 *** 作,但会使数据修改 *** 作变慢。每修改数据记录,索引就必须刷新一次。为了在某种程度上弥补这一缺陷,许多 SQL 命令都有一个 DELAY_KEY_WRITE 项。这个选项的作用是暂时制止 MySQL 在该命令每插入一条新记录和每修改一条现有之后立刻对索引进行刷新,对索引的刷新将等到全部记录插入/修改完毕之后再进行。在需要把许多新记录插入某个数据表的场合,DELAY_KEY_WRITE 选项的作用将非常明显。另外,索引还会在硬盘上占用相当大的空间。因此应该只为最经常查询和最经常排序的数据列建立索引。注意,如果某个数据列包含许多重复的内容,为它建立索引就没有太大的实际效果。
从理论上讲,完全可以为数据表里的每个字段分别建一个索引,但 MySQL 把同一个数据表里的索引总数限制为16个。
1.InnoDB 数据表的索引
与 InnoDB数据表相比,在 InnoDB 数据表上,索引对 InnoDB 数据表的重要性要大得多。在 InnoDB 数据表上,索引不仅会在搜索数据记录时发挥作用,还是数据行级锁定机制的苊、基础。“数据行级锁定”的意思是指在事务 *** 作的执行过程中锁定正在被处理的个别记录,不让其他用户进行访问。这种锁定将影响到(但不限于)SELECT、LOCKINSHAREMODE、SELECT、FORUPDATE 命令以及 INSERT、UPDATE 和 DELETE 命令。出于效率方面的考虑,InnoDB 数据表的数据行级锁定实际发生在它们的索引上,而不是数据表自身上。显然,数据行级锁定机制只有在有关的数据表有一个合适的索引可供锁定的时候才能发挥效力。
2.限制
如果 WHERE 子句的查询条件里有不等号(WHERE coloum !=),MySQL 将无法使用索引。类似地,如果 WHERE 子句的查询条件里使用了函数(WHERE DAY(column)=),MySQL 也将无法使用索引。在 JOIN *** 作中(需要从多个数据表提取数据时),MySQL 只有在主键和外键的数据类型相同时才能使用索引。
如果 WHERE 子句的查询条件里使用比较 *** 作符 LIKE 和 REGEXP,MySQL 只有在搜索模板的第一个字符不是通配符的情况下才能使用索引。比如说,如果查询条件是 LIKE 'abc%‘,MySQL 将使用索引;如果查询条件是 LIKE '%abc’,MySQL 将不使用索引。
在 ORDER BY *** 作中,MySQL 只有在排序条件不是一个查询条件表达式的情况下才使用索引。(虽然如此,在涉及多个数据表查询里,即使有索引可用,那些索引在加快 ORDER BY 方面也没什么作用)。如果某个数据列里包含许多重复的值,就算为它建立了索引也不会有很好的效果。比如说,如果某个数据列里包含的净是些诸如 “0/1” 或 “Y/N” 等值,就没有必要为它创建一个索引。 1.普通索引
普通索引(由关键字 KEY 或 INDEX 定义的索引)的唯一任务是加快对数据的访问速度。因此,应该只为那些最经常出现在查询条件(WHERE column =)或排序条件(ORDER BY column)中的数据列创建索引。只要有可能,就应该选择一个数据最整齐、最紧凑的数据列(如一个整数类型的数据列)来创建索引。
2.唯一索引
普通索引允许被索引的数据列包含重复的值。比如说,因为人有可能同名,所以同一个姓名在同一个“员工个人资料”数据表里可能出现两次或更多次。
如果能确定某个数据列将只包含彼此各不相同的值,在为这个数据列创建索引的时候就应该用关键字UNIQUE 把它定义为一个唯一索引。这么做的好处:一是简化了 MySQL 对这个索引的管理工作,这个索引也因此而变得更有效率;二是 MySQL 会在有新记录插入数据表时,自动检查新记录的这个字段的值是否已经在某个记录的这个字段里出现过了;如果是,MySQL 将拒绝插入那条新记录。也就是说,唯一索引可以保证数据记录的唯一性。事实上,在许多场合,人们创建唯一索引的目的往往不是为了提高访问速度,而只是为了避免数据出现重复。
3.主索引
在前面已经反复多次强调过:必须为主键字段创建一个索引,这个索引就是所谓的“主索引”。主索引与唯一索引的唯一区别是:前者在定义时使用的关键字是 PRIMARY 而不是 UNIQUE。
4.外键索引
如果为某个外键字段定义了一个外键约束条件,MySQL 就会定义一个内部索引来帮助自己以最有效率的方式去管理和使用外键约束条件。
5.复合索引
索引可以覆盖多个数据列,如像 INDEX (columnA, columnB) 索引。这种索引的特点是 MySQL 可以有选择地使用一个这样的索引。如果查询 *** 作只需要用到 columnA 数据列上的一个索引,就可以使用复合索引 INDEX(columnA, columnB)。不过,这种用法仅适用于在复合索引中排列在前的数据列组合。比如说,INDEX (A,B,C) 可以当做 A 或 (A,B) 的索引来使用,但不能当做 B、C 或 (B,C) 的索引来使用。 在为 CHAR 和 VARCHAR 类型的数据列定义索引时,可以把索引的长度限制为一个给定的字符个数(这个数字必须小于这个字段所允许的最大字符个数)。这么做的好处是可以生成一个尺寸比较小、检索速度却比较快的索引文件。在绝大多数应用里,数据库中的字符串数据大都以各种各样的名字为主,把索引的长度设置为10~15 个字符已经足以把搜索范围缩小到很少的几条数据记录了。在为 BLOB 和 TEXT 类型的数据列创建索引时,必须对索引的长度做出限制;MySQL 所允许的最大索引全文索引文本字段上的普通索引只能加快对出现在字段内容最前面的字符串(也就是字段内容开头的字符)进行检索 *** 作。如果字段里存放的是由几个、甚至是多个单词构成的较大段文字,普通索引就没什么作用了。这种检索往往以的形式出现,这对 MySQL 来说很复杂,如果需要处理的数据量很大,响应时间就会很长。
这类场合正是全文索引(full-textindex)可以大显身手的地方。在生成这种类型的索引时,MySQL 将把在文本中出现的所有单词创建为一份清单,查询 *** 作将根据这份清单去检索有关的数据记录。全文索引即可以随数据表一同创建,也可以等日后有必要时再使用下面这条命令添加:
ALTER TABLE tablename ADD FULLTEXT(column1,column2)有了全文索引,就可以用 SELECT 查询命令去检索那些包含着一个或多个给定单词的数据记录了。下面是这类查询命令的基本语法:
SELECT * FROM tablename
WHERE MATCH (column1,column2) AGAINST('word1','word2','word3')
上面这条命令将把 column1 和 column2 字段里有 word1、word2 和 word3 的数据记录全部查询出来。
注解:InnoDB 数据表不支持全文索引。 只有当数据库里已经有了足够多的测试数据时,它的性能测试结果才有实际参考价值。如果在测试数据库里只有几百条数据记录,它们往往在执行完第一条查询命令之后就被全部加载到内存里,这将使后续的查询命令都执行得非常快--不管有没有使用索引。只有当数据库里的记录超过了 1000 条、数据总量也超过了 MySQL 服务器上的内存总量时,数据库的性能测试结果才有意义。
在不确定应该在哪些数据列上创建索引的时候,人们从 EXPLAIN SELECT 命令那里往往可以获得一些帮助。这其实只是简单地给一条普通的 SELECT 命令加一个 EXPLAIN 关键字作为前缀而已。有了这个关键字,MySQL 将不是去执行那条 SELECT 命令,而是去对它进行分析。MySQL 将以表格的形式把查询的执行过程和用到的索引等信息列出来。
在 EXPLAIN 命令的输出结果里,第1列是从数据库读取的数据表的名字,它们按被读取的先后顺序排列。type列指定了本数据表与其它数据表之间的关联关系(JOIN)。在各种类型的关联关系当中,效率最高的是 system,然后依次是 const、eq_ref、ref、range、index 和 All(All 的意思是:对应于上一级数据表里的每一条记录,这个数据表里的所有记录都必须被读取一遍——这种情况往往可以用一索引来避免)。
possible_keys 数据列给出了 MySQL 在搜索数据记录时可选用的各个索引。key 数据列是 MySQL 实际选用的索引,这个索引按字节计算的长度在 key_len 数据列里给出。比如说,对于一个 INTEGER 数据列的索引,这个字节长度将是4。如果用到了复合索引,在 key_len 数据列里还可以看到 MySQL 具体使用了它的哪些部分。作为一般规律,key_len 数据列里的值越小越好。
ref 数据列给出了关联关系中另一个数据表里的数据列的名字。row 数据列是 MySQL 在执行这个查询时预计会从这个数据表里读出的数据行的个数。row 数据列里的所有数字的乘积可以大致了解这个查询需要处理多少组合。
最后,extra 数据列提供了与 JOIN *** 作有关的更多信息,比如说,如果 MySQL 在执行这个查询时必须创建一个临时数据表,就会在 extra 列看到 usingtemporary 字样。
MySQL 前缀索引能有效减小索引文件的大小,提高索引的速度。但是前缀索引也有它的坏处:MySQL 不能在 ORDER BY 或 GROUP BY 中使用前缀索引,也不能把它们用作覆盖索引(Covering Index)。
集一个索引包含多个列(最左前缀匹配原则)
索引列的值必须唯一,但允许有空值
全文索引为FUllText,在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值,全文索引可以在CHAR,VARCHAR,TEXT类型列上创建
设定主键后数据会自动建立索引,InnoDB为聚簇索引
即一个索引只包含单个列,一个表可以有多个单列索引
覆盖索引是指一个查询语句的执行只用从所有就能够得到,不必从数据表中读取,覆盖索引不是索引树,是一个结果,当一条查询语句符合覆盖索引条件时候,MySQL只需要通过索引就可以返回查询所需要的数据,这样避免了查到索引后的回表 *** 作,减少了I/O效率
查看索引
列名解析:
删除索引
查看:
删除前:
删除后:
普通的索引,没有什么介绍
查看:(注意和前缀索引Sub_part的区别)
当索引的列是unique的时候,会生成唯一索引,唯一索引关于null有下列两种情况
SQLSERVER 下的唯一索引的列,允许null值,但最多允许有一个空值
MYSQL下的唯一索引的列,允许null值,并且允许多个空值
查看:
会建立两个索引,一个非聚簇索引,一个是唯一索引
结果:
可以插入两个空值(明人不说暗话,我喜欢MySQL)
一方面,它不会索引所有字段所有字符,会减小索引树的大小.
另外一方面,索引只是为了区别出值,对于某些列,可能前几位区别很大,我们就可以使用前缀索引。
一般情况下某个前缀的选择性也是足够高的,足以满足查询性能。对于BLOB,TEXT,或者很长的VARCHAR类型的列,必须使用前缀索引,因为MySQL不允许索引这些列的完整长度。
查看:
查看:
复合索引的最左前缀匹配原则 :
对于复合索引,查询在一定条件才会使用该索引
减少开销。 建一个联合索引(col1,col2,col3),实际相当于建了(col1),(col1,col2),(col1,col2,col3)三个索引。每多一个索引,都会增加写 *** 作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!
覆盖索引。 对联合索引(col1,col2,col3),如果有如下的sql: select col1,col2,col3 from test where col1=1 and col2=2。那么MySQL可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机io *** 作。减少io *** 作,特别的随机io其实是dba主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。
效率高。 索引列越多,通过索引筛选出的数据越少。有1000W条数据的表,有如下sql:select from table where col1=1 and col2=2 and col3=3,假设假设每个条件可以筛选出10%的数据,如果只有单值索引,那么通过该索引能筛选出1000W10%=100w条数据,然后再回表从100w条数据中找到符合col2=2 and col3= 3的数据,然后再排序,再分页;如果是联合索引,通过索引筛选出1000w10% 10% *10%=1w。
在模糊搜索中很有效,搜索全文中的某一个字段,可以参考这篇博文
: https://zhuanlan.zhihu.com/p/88275060
我们先进行下面一个实验看看InnoDB下的主键索引的一个现象。
查看:
我们插入进去的时候,数据的id都是乱序的,为什么这里最后select查询出来的结果都是进行了排序?
这是因为InnoDB索引底层实现的是B+tree,B+tree具有下列的特点:
所以上面的排序是为了使用B+tree的结构 ,B+tree为了范围搜索,将主键按照从小到大排序后,拆分成节点。后续还有新的节点进入的时候,和B-tree相同的 *** 作,会进行分裂。
一般来说,聚簇索引的B+tree都是三层
InnoDB中主键索引一定是聚簇索引,聚簇索引一定是主键索引。
为什么这里辅助索引叶子结点不直接存储数据呢?
MYISAM只有非聚簇索引,索引最终指向的都是物理地址。
Q:既然有回表的存在,那么聚簇索引的优势在哪里?
Q:主键索引作为聚簇索引需要注意什么
在查询语句中使用LIke关键字进行查询时,如果匹配字符串的第一个字符为"%",索引不会使用。如果“%”不是在第一位,索引就会使用
多列索引是在表的多个字段上创建的索引,满足最左前缀匹配原则,索引才会被使用
查询语句只有Or关键字时候,如果OR前后的两个条件都是索引,这这次查询将会使用索引,否则Or前后有一个条件的列不是索引,那么查询中将不使用索引
1.选择唯一性索引唯一性索引的值是唯一的,可以更快速的通过该索引来确定某条记录。例如,学生表中学号是具有唯一性的字段。为该字段建立唯一性索引可以很快的确定某个学生的信息。如果使用姓名的话,可能存在同名现象,从而降低查询速度。
2.为经常需要排序、分组和联合 *** 作的字段建立索引
经常需要ORDER BY、GROUP BY、DISTINCT和UNION等 *** 作的字段,排序 *** 作会浪费很多时间。如果为其建立索引,可以有效地避免排序 *** 作。
3.为常作为查询条件的字段建立索引
如果某个字段经常用来做查询条件,那么该字段的查询速度会影响整个表的查询速度。因此,为这样的字段建立索引,可以提高整个表的查询速度。
4.限制索引的数目
索引的数目不是越多越好。每个索引都需要占用磁盘空间,索引越多,需要的磁盘空间就越大。修改表时,对索引的重构和更新很麻烦。越多的索引,会使更新表变得很浪费时间。
5.尽量使用数据量少的索引
如果索引的值很长,那么查询的速度会受到影响。例如,对一个CHAR(100)类型的字段进行全文检索需要的时间肯定要比对CHAR(10)类型的字段需要的时间要多。
6.尽量使用前缀来索引
如果索引字段的值很长,最好使用值的前缀来索引。例如,TEXT和BLOG类型的字段,进行全文检索会很浪费时间。如果只检索字段的前面的若干个字符,这样可以提高检索速度。
7.删除不再使用或者很少使用的索引
表中的数据被大量更新,或者数据的使用方式被改变后,原有的一些索引可能不再需要。数据库管理员应当定期找出这些索引,将它们删除,从而减少索引对更新 *** 作的影响。
8 . 最左前缀匹配原则,非常重要的原则。
mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a 1=”” and=”” b=”2” c=”“>3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
9 .=和in可以乱序。
比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
。
10 . 尽量选择区分度高的列作为索引。
区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就 是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条 记录
11 .索引列不能参与计算,保持列“干净”。
比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本 太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)
12 .尽量的扩展索引,不要新建索引。
比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可
注意:选择索引的最终目的是为了使查询的速度变快。上面给出的原则是最基本的准则,但不能拘泥于上面的准则。读者要在以后的学习和工作中进行不断的实践。根据应用的实际情况进行分析和判断,选择最合适的索引方式。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)