如select * from 表名 limit 0,1就是获取第一条数据
select * from 表名 limit 1,1就是获取第二条数据
select * from 表名 limit 2,1就是获取第三条数据
以此类推
一、mysql查询的五种子句where(条件查询)、having(筛选)、group by(分组)、order by(排序)、limit(限制结果数)
1、where常用运算符:
比较运算符
>, <,= , != (<>),>= , <=
in(v1,v2..vn)
between v1 and v2在v1至v2之间(包含v1,v2)
逻辑运算符
not ( ! ) 逻辑非
or ( || )逻辑或
and ( &&) 逻辑与
where price>=3000 and price <= 5000 or price >=500 and price <=1000
取500-1000或者3000-5000的值
where price not between 3000 and 5000
不在3000与5000之间的值
模糊查询
like 像
通配符:
% 任意字符
_ 单个字符
where goods_name like '诺基亚%'
where goods_name like '诺基亚N__'
2、group by 分组
一般情况下group需与统计函数(聚合函数)一起使用才有意义
如:select goods_id,goods_name,cat_id,max(shop_price) from goods group by cat_id
这里取出来的结果中的good_name是错误的!因为shop_price使用了max函数,那么它是取最大的,而语句中使用了group by 分组,那么goods_name并没有使用聚合函数,它只是cat_id下的第一个商品,并不会因为shop_price改变而改变
mysql中的五种统计函数:
(1)max:求最大值
select max(goods_price) from goods
这里会取出最大的价格的值,只有值
#查询每个栏目下价格最高的
select cat_id,max(goods_price) from goos group by cat_id
#查出价格最高的商品编号
select goods_id,max(goods_price) from goods group by goods_id
(2)min:求最小值
(3)sum:求总数和
#求商品库存总和
select sum(goods_number) from goods
(4)avg:求平均值
#求每个栏目的商品平均价格
select cat_id,avg(goods_price) from goods group by cat_id
(5)count:求总行数
#求每个栏目下商品种类
select cat_id,count(*) from goods group by cat_id
###要把每个字段名当成变量来理解,它可以进行运算###
例:查询本店每个商品价格比市场价低多少;
select goods_id,goods_name,goods_price-market_price from goods
查询每个栏目下面积压的货款
select cat_id,sum(goods_price*goods_number) from goods group by cat_id
###可以用as来给计算结果取个别名###
select cat_id,sum(goods_price * goods_number) as hk from goods group by cat_id
不仅列名可以取别名,表单也可以取别名
3、having 与where 的异同点
having与where类似,可以筛选数据,where后的表达式怎么写,having后就怎么写
where针对表中的列发挥作用,查询数据
having对查询结果中的列发挥作用,筛选数据
#查询本店商品价格比市场价低多少钱,输出低200元以上的商品
select goods_id,good_name,market_price - shop_price as s from goods having s>200
//这里不能用where因为s是查询结果,而where只能对表中的字段名筛选
如果用where的话则是:
select goods_id,goods_name from goods where market_price - shop_price >200
#同时使用where与having
select cat_id,goods_name,market_price - shop_price as s from goods where cat_id = 3 having s >200
#查询积压货款超过2万元的栏目,以及该栏目积压的货款
select cat_id,sum(shop_price * goods_number) as t from goods group by cat_id having s >20000
#查询两门及两门以上科目不及格的学生的平均分
思路:
#先计算所有学生的平均分
select name,avg(score) as pj from stu group by name
#查出所有学生的挂科情况
select name,score<60 from stu
#这里score<60是判断语句,所以结果为真或假,mysql中真为1假为0
#查出两门及两门以上不及格的学生
select name,sum(score<60) as gk from stu group by name having gk >1
#综合结果
select name,sum(score<60) as gk,avg(score) as pj from stu group by name having gk >1
4、order by
(1) order by price //默认升序排列
(2)order by price desc //降序排列
(3)order by price asc //升序排列,与默认一样
(4)order by rand() //随机排列,效率不高
#按栏目号升序排列,每个栏目下的商品价格降序排列
select * from goods where cat_id !=2 order by cat_id,price desc
5、limit
limit [offset,] N
offset 偏移量,可选,不写则相当于limit 0,N
N 取出条目
#取价格第4-6高的商品
select good_id,goods_name,goods_price from goods order by good_price desc limit 3,3
###查询每个栏目下最贵的商品
思路:
#先对每个栏目下的商品价格排序
select cat_id,goods_id,goods_name,shop_price from goods order by cat_id,shop_price desc
#上面的查询结果中每个栏目的第一行的商品就是最贵的商品
#把上面的查询结果理解为一个临时表[存在于内存中]【子查询】
#再从临时表中选出每个栏目最贵的商品
select * from (select goods_id,goods_name,cat_id,shop_price from goods order by cat_id,shop_price desc) as t group by cat_id
#这里使用group by cat_id是因为临时表中每个栏目的第一个商品就是最贵的商品,而group by前面没有使用聚合函数,所以默认就取每个分组的第一行数据,这里以cat_id分组
良好的理解模型:
1、where后面的表达式,把表达式放在每一行中,看是否成立
2、字段(列),理解为变量,可以进行运算(算术运算和逻辑运算)
3、 取出结果可以理解成一张临时表
二、mysql子查询
1、where型子查询
(把内层查询结果当作外层查询的比较条件)
#不用order by 来查询最新的商品
select goods_id,goods_name from goods where goods_id = (select max(goods_id) from goods)
#取出每个栏目下最新的产品(goods_id唯一)
select cat_id,goods_id,goods_name from goods where goods_id in(select max(goods_id) from goods group by cat_id)
2、from型子查询
(把内层的查询结果供外层再次查询)
#用子查询查出挂科两门及以上的同学的平均成绩
思路:
#先查出哪些同学挂科两门以上
select name,count(*) as gk from stu where score <60 having gk >=2
#以上查询结果,我们只要名字就可以了,所以再取一次名字
select name from (select name,count(*) as gk from stu having gk >=2) as t
#找出这些同学了,那么再计算他们的平均分
select name,avg(score) from stu where name in (select name from (select name,count(*) as gk from stu having gk >=2) as t) group by name
3、exists型子查询
(把外层查询结果拿到内层,看内层的查询是否成立)
#查询哪些栏目下有商品,栏目表category,商品表goods
select cat_id,cat_name from category where exists(select * from goods where goods.cat_id = category.cat_id)
三、union的用法
(把两次或多次的查询结果合并起来,要求查询的列数一致,推荐查询的对应的列类型一致,可以查询多张表,多次查询语句时如果列名不一样,则取第一次的列名!如果不同的语句中取出的行的每个列的值都一样,那么结果将自动会去重复,如果不想去重复则要加all来声明,即union all)
## 现有表a如下
id num
a5
b10
c15
d10
表b如下
id num
b5
c10
d20
e99
求两个表中id相同的和
select id,sum(num) from (select * from ta union select * from tb) as tmp group by id
//以上查询结果在本例中的确能正确输出结果,但是,如果把tb中的b的值改为10以查询结果的b的值就是10了,因为ta中的b也是10,所以union后会被过滤掉一个重复的结果,这时就要用union all
select id,sum(num) from (select * from ta union all select * from tb) as tmp group by id
#取第4、5栏目的商品,按栏目升序排列,每个栏目的商品价格降序排列,用union完成
select goods_id,goods_name,cat_id,shop_price from goods where cat_id=4 union select goods_id,goods_name,cat_id,shop_price from goods where cat_id=5 order by cat_id,shop_price desc
【如果子句中有order by 需要用( ) 包起来,但是推荐在最后使用order by,即对最终合并后的结果来排序】
#取第3、4个栏目,每个栏目价格最高的前3个商品,结果按价格降序排列
(select goods_id,goods_name,cat_id,shop_price from goods where cat_id=3 order by shop_price desc limit 3) union (select goods_id,goods_name,cat_id,shop_price from goods where cat_id=4 order by shop_price desc limit 3) order by shop_price desc
四、左连接,右连接,内连接
现有表a有10条数据,表b有8条数据,那么表a与表b的笛尔卡积是多少?
select * from ta,tb //输出结果为8*10=80条
1、左连接
以左表为准,去右表找数据,如果没有匹配的数据,则以null补空位,所以输出结果数>=左表原数据数
语法:select n1,n2,n3 from ta left join tb on ta.n1= ta.n2 [这里on后面的表达式,不一定为=,也可以>,<等算术、逻辑运算符]【连接完成后,可以当成一张新表来看待,运用where等查询】
#取出价格最高的五个商品,并显示商品的分类名称
select goods_id,goods_name,goods.cat_id,cat_name,shop_price from goods left join category on goods.cat_id = category.cat_id order by shop_price desc limit 5
2、右连接
a left join b 等价于 b right join a
推荐使用左连接代替右连接
语法:select n1,n2,n3 from ta right join tb on ta.n1= ta.n2
3、内连接
查询结果是左右连接的交集,【即左右连接的结果去除null项后的并集(去除了重复项)】
mysql目前还不支持 外连接(即左右连接结果的并集,不去除null项)
语法:select n1,n2,n3 from ta inner join tb on ta.n1= ta.n2
总结:可以对同一张表连接多次,以分别取多次数据
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<> *** 作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标 *** 作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务 *** 作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)