mysql分片,表关联查询的sql怎么写

mysql分片,表关联查询的sql怎么写,第1张

以每24小时作为一份时间(而非自然日),根据用户的配置有两种工作模式:带状模式中,用户仅定义开始日期时,从开始日期(含)开始,每份时间1个分片地无限增加下去;环状模式中,用户定义了开始日期和结束日期时,以结束日期(含)和开始日期(含)之间的时间份数作为分片总数(分片数量固定),以类似取模的方式路由到这些分片里。

1. DBLE 启动时,读取用户在 rule.xml 配置的 sBeginDate 来确定起始时间

2. 读取用户在 rule.xml 配置的 sPartionDay 来确定每个 MySQL 分片承载多少天内的数据

3. 读取用户在 rule.xml 配置的 dateFormat 来确定分片索引的日期格式

4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的时间类型

5. 然后求分片索引值与起始时间的差,除以 MySQL 分片承载的天数,确定所属分片

1. DBLE 启动时,读取用户在 rule.xml 配置的起始时间 sBeginDate、终止时间 sEndDate 和每个 MySQL 分片承载多少天数据 sPartionDay

2. 根据用户设置,建立起以 sBeginDate 开始,每 sPartionDay 天一个分片,直到 sEndDate 为止的一个环,把分片串联串联起来

3. 读取用户在 rule.xml 配置的 defaultNode

4. 在 DBLE 的运行过程中,用户访问使用这个算法的表时,WHERE 子句中的分片索引值(字符串),会被提取出来尝试转换成 Java 内部的日期类型

5. 然后求分片索引值与起始日期的差:如果分片索引值不早于 sBeginDate(哪怕晚于 sEndDate),就以 MySQL 分片承载的天数为模数,对分片索引值求模得到所属分片;如果分片索引值早于 sBeginDate,就会被放到 defaultNode 分片上

与MyCat的类似分片算法对比

中间件

DBLE

MyCat

分片算法种类 date 分区算法 按日期(天)分片

两种中间件的取模范围分片算法使用上无差别

开发注意点

【分片索引】1. 必须是字符串,而且 java.text.SimpleDateFormat 能基于用户指定的 dateFormat 来转换成 java.util.Date

【分片索引】2. 提供带状模式和环状模式两种模式

【分片索引】3. 带状模式以 sBeginDate(含)起,以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,理论上分片数量可以无限增长,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)

【分片索引】4. 环状模式以 86400000 毫秒(24 小时整)为一份,每 sPartionDay 份为一个分片,以 sBeginDate(含)到 sEndDate(含)的时间长度除以单个分片长度得到恒定的分片数量,但是出现 sBeginDate 之前的数据而且没有设定 defaultNode 的话,会路由失败(如果有 defaultNode,则路由至 defaultNode)

【分片索引】5. 无论哪种模式,分片索引字段的格式化字符串 dateFormat 由用户指定

【分片索引】6. 无论哪种模式,划分不是以日历时间为准,无法对应自然月和自然年,且会受闰秒问题影响

运维注意点

【扩容】1. 带状模式中,随着 sBeginDate 之后的数据出现,分片数量的增加无需再平衡

【扩容】2. 带状模式没有自动增添分片的能力,需要运维手工提前增加分片;如果路由策略计算出的分片并不存在时,会导致失败

【扩容】3. 环状模式中,如果新旧 [sBeginDate,sEndDate] 之间有重叠,需要进行部分数据迁移;如果新旧 [sBeginDate,sEndDate] 之间没有重叠,需要数据再平衡

配置注意点

【配置项】1. 在 rule.xml 中,可配置项为 <propertyname="sBeginDate">、 <propertyname="sPartionDay">、 <propertyname="dateFormat">、 <propertyname="sEndDate">和 <propertyname="defaultNode">

【配置项】2.在 rule.xml 中配置 <propertyname="dateFormat">,符合 java.text.SimpleDateFormat 规范的字符串,用于告知 DBLE 如何解析sBeginDate和sEndDate

【配置项】3.在 rule.xml 中配置 <propertyname="sBeginDate">,必须是符合 dateFormat 的日期字符串

【配置项】4.在 rule.xml 中配置 <propertyname="sEndDate">,必须是符合 dateFormat 的日期字符串;配置了该项使用的是环状模式,若没有配置该项则使用的是带状模式

【配置项】5.在 rule.xml 中配置 <propertyname="sPartionDay">,非负整数,该分片策略以 86400000 毫秒(24 小时整)作为一份,而 sPartionDay 告诉 DBLE 把每多少份放在同一个分片

【配置项】6.在 rule.xml 中配置 <propertyname="defaultNode">标签,非必须配置项,不配置该项的话,用户的分片索引值没落在 mapFile 定义

当前做分布式的厂商有几家,我知道比较出名的有“华为云分布式数据库DDM”和“阿里云分布式数据库”,感兴趣可以自行搜素了解下。

分布式数据库的几点概念可以了解一下。

数据分库:

以表为单位,把原有数据库切分成多个数据库。切分后不同的表存储在不同的数据库上。

以表中的数据行记录为单位,把原有逻辑数据库切分成多个物理数据库分片,表数据记录分布存储在各个分片上。

路由分发:

在分布式数据库中,路由的作用即将SQL语句进行解析,并转发到正确的分片上,保证SQL执行后得到正确的结果,并且节约QPS资源。

读写分离:

数据库中对计算和缓存资源消耗较多的往往是密集或复杂的SQL查询。当系统资源被查询语句消耗,反过来会影响数据写入 *** 作,进而导致数据库整体性能下降,响应缓慢。因此,当数据库CPU和内存资源占用居高不下,且读写比例较高时,可以为数据库添加只读数据库。

参考: https://www.jianshu.com/p/5e0062f6cf62

图中是两组分片,红色我们称为shard1,蓝色我们称为shard2

51 52是服务器

两个3307互为主从(双主),3309是本地3307的从库

说明:没有明确说明是只在某一个节点上做的,就是两个节点都做

两台虚拟机 db01 db02

每台创建四个mysql实例:3307 3308 3309 3310

mysql软件我们之前已完成二进制安装,直接初始化即可

我们server-id规划为:db01上是7/8/9/10,db02上是17/18/19/20

"箭头指向谁是主库"

10.0.0.51:3307<-----> 10.0.0.52:3307

10.0.0.51:3309------> 10.0.0.51:3307

10.0.0.52:3309------> 10.0.0.52:3307

两个分片,每个分片四个mysql节点

shard1:

Master:10.0.0.51:3307

slave1:10.0.0.51:3309

Standby Master:10.0.0.52:3307

slave2:10.0.0.52:3309

shard2:

Master:10.0.0.52:3308

slave1:10.0.0.52:3310

Standby Master:10.0.0.51:3308

slave2:10.0.0.51:3310

shard1

10.0.0.51:3307 <----->10.0.0.52:3307

db02

db01

db02

10.0.0.51:3309 ------>10.0.0.51:3307

db01

10.0.0.52:3309 ------>10.0.0.52:3307

db02

shard2

10.0.0.52:3308 <----->10.0.0.51:3308

db01

db02

db01

10.0.0.52:3310 ----->10.0.0.52:3308

db02

10.0.0.51:3310 ----->10.0.0.51:3308

db01

这个复制用户在谁上建都行

注:如果中间出现错误,在每个节点进行执行以下命令

常见方案:

360 Atlas-Sharding 360

Alibaba cobar 阿里

Mycat 开源

TDDL 淘宝

Heisenberg 百度

Oceanus 58同城

Vitess 谷歌

OneProxy

DRDS 阿里云

我们装的是openjdk,不是官方的那个

Mycat-server-xxxxx.linux.tar.gz

http://dl.mycat.io/

配置环境变量

我们mycat的命令也是在bin目录下

启动

8066就是对外提供服务的端口,9066是管理端口

连接mycat:

默认123456

db01:

我们一般先把原schema.xml备份,然后自己新写一个:

xml和html看起来差不多,xml是从下往上调用的

前三行我们不用看,直接从第四行schema开始看起:

定义了schema,然后以/schema结尾

为什么要用逻辑库?

业务透明化

此配置文件就是实现读写分离的配置

重启mycat

读写分离测试

总结:

以上案例实现了1主1从的读写分离功能,写 *** 作落到主库,读 *** 作落到从库.如果主库宕机,从库不能在继续提供服务了。

我们推荐这种架构

一写三读,

不设置双写的原因是:性能没提升多少,反而引起主键冲突的情况

配置文件:

之后重启:mycat restart

真正的 writehost:负责写 *** 作的writehost

standby writeHost :和readhost一样,只提供读服务

我们此处写了两个writehost,默认使用第一个

当写节点宕机后,后面跟的readhost也不提供服务,这时候standby的writehost就提供写服务,

后面跟的readhost提供读服务

测试:

读写分离测试

对db01 3307节点进行关闭和启动,测试读写 *** 作

结果应为另一台(52)的3307(17)是写,3309(19)是读

一旦7号节点恢复,此时因为7落后了,写节点仍是17

balance属性

负载均衡类型,目前的取值有3种:

writeType属性

负载均衡类型,目前的取值有2种:

switchType属性

-1 表示不自动切换

1 默认值,自动切换

2 基于MySQL主从同步的状态决定是否切换 ,心跳语句为 show slave status

datahost其他配置

<dataHost name="localhost1" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="native" switchType="1">

maxCon="1000":最大的并发连接数

minCon="10" :mycat在启动之后,会在后端节点上自动开启的连接线程,长连接,好处是连接速度快,弊端是占内存

tempReadHostAvailable="1"

这个一主一从时(1个writehost,1个readhost时),可以开启这个参数,如果2个writehost,2个readhost时

<heartbeat>select user()</heartbeat> 监测心跳

其他参数sqlMaxLimit自动分页,必须在启用分表的情况下才生效

创建测试库和表:

我们重启mycat后连接到8066

发现跟一个库一样,实际上已经分到不同的物理硬件上了

分片:对一个"bigtable",比如说t3表

热点数据表 核心表

(1)行数非常多,800w下坡

(2)访问非常频繁

分片的目的:

(1)将大数据量进行分布存储

(2)提供均衡的访问路由

分片策略:

范围 range 800w 1-400w 400w01-800w 不适用于业务访问不均匀的情况

取模 mod(取余数) 和节点的数量进行取模

枚举 按枚举的种类分,如移动项目按省份分

哈希 hash

时间 流水

优化关联查询(否则join的表在不同分片上,效率会比单库还要低)

全局表

ER分片

案例:移动统一:先拆出边缘业务,再按地域分片,但对应用来说是统一的

vim rule.xml

<tableRule name="auto-sharding-long">

<rule>

<columns>id</columns>

<algorithm>rang-long</algorithm>

</rule>

<function name="rang-long"

class="io.mycat.route.function.AutoPartitionByLong">

<property name="mapFile">autopartition-long.txt</property>

</function>

===================================

vim autopartition-long.txt

0-10=0

11-20=1

创建测试表:

mysql -S /data/3307/mysql.sock -e "use taobaocreate table t3 (id int not null primary key auto_increment,name varchar(20) not null)"

mysql -S /data/3308/mysql.sock -e "use taobaocreate table t3 (id int not null primary key auto_increment,name varchar(20) not null)"

测试:

重启mycat

mycat restart

mysql -uroot -p123456 -h 127.0.0.1 -P 8066

insert into t3(id,name) values(1,'a')

insert into t3(id,name) values(2,'b')

insert into t3(id,name) values(3,'c')

insert into t3(id,name) values(4,'d')

insert into t3(id,name) values(11,'aa')

insert into t3(id,name) values(12,'bb')

insert into t3(id,name) values(13,'cc')

insert into t3(id,name) values(14,'dd')

取余分片方式:分片键(一个列)与节点数量进行取余,得到余数,将数据写入对应节点

vim schema.xml

<table name="t4" dataNode="sh1,sh2" rule="mod-long" />

vim rule.xml

<property name="count">2</property>

准备测试环境

创建测试表:

mysql -S /data/3307/mysql.sock -e "use taobaocreate table t4 (id int not null primary key auto_increment,name varchar(20) not null)"

mysql -S /data/3308/mysql.sock -e "use taobaocreate table t4 (id int not null primary key auto_increment,name varchar(20) not null)"

重启mycat

mycat restart

测试:

mysql -uroot -p123456 -h10.0.0.52 -P8066

use TESTDB

insert into t4(id,name) values(1,'a')

insert into t4(id,name) values(2,'b')

insert into t4(id,name) values(3,'c')

insert into t4(id,name) values(4,'d')

分别登录后端节点查询数据

mysql -S /data/3307/mysql.sock

use taobao

select * from t4

mysql -S /data/3308/mysql.sock

use taobao

select * from t4

t5 表

id name telnum

1 bj 1212

2 sh 22222

3 bj 3333

4 sh 44444

5 bj 5555

sharding-by-intfile

vim schema.xml

<table name="t5" dataNode="sh1,sh2" rule="sharding-by-intfile" />

vim rule.xml

<tableRule name="sharding-by-intfile">

<rule><columns>name</columns>

<algorithm>hash-int</algorithm>

</rule>

</tableRule>

<function name="hash-int" class="org.opencloudb.route.function.PartitionByFileMap">

<property name="mapFile">partition-hash-int.txt</property>

<property name="type">1</property>

<property name="defaultNode">0</property>

</function>

partition-hash-int.txt 配置:

bj=0

sh=1

DEFAULT_NODE=1

columns 标识将要分片的表字段,algorithm 分片函数, 其中分片函数配置中,mapFile标识配置文件名称

准备测试环境

mysql -S /data/3307/mysql.sock -e "use taobaocreate table t5 (id int not null primary key auto_increment,name varchar(20) not null)"

mysql -S /data/3308/mysql.sock -e "use taobaocreate table t5 (id int not null primary key auto_increment,name varchar(20) not null)"

重启mycat

mycat restart

mysql -uroot -p123456 -h10.0.0.51 -P8066

use TESTDB

insert into t5(id,name) values(1,'bj')

insert into t5(id,name) values(2,'sh')

insert into t5(id,name) values(3,'bj')

insert into t5(id,name) values(4,'sh')

insert into t5(id,name) values(5,'tj')

a b c d

join

t

select t1.name ,t.x from t1

join t

select t2.name ,t.x from t2

join t

select t3.name ,t.x from t3

join t

使用场景:

如果你的业务中有些数据类似于数据字典,比如配置文件的配置,

常用业务的配置或者数据量不大很少变动的表,这些表往往不是特别大,

而且大部分的业务场景都会用到,那么这种表适合于Mycat全局表,无须对数据进行切分,

要在所有的分片上保存一份数据即可,Mycat 在Join *** 作中,业务表与全局表进行Join聚合会优先选择相同分片内的全局表join,

避免跨库Join,在进行数据插入 *** 作时,mycat将把数据分发到全局表对应的所有分片执行,在进行数据读取时候将会随机获取一个节点读取数据。

vim schema.xml

<table name="t_area" primaryKey="id" type="global" dataNode="sh1,sh2" />

后端数据准备

mysql -S /data/3307/mysql.sock

use taobao

create table t_area (id int not null primary key auto_increment,name varchar(20) not null)

mysql -S /data/3308/mysql.sock

use taobao

create table t_area (id int not null primary key auto_increment,name varchar(20) not null)

重启mycat

mycat restart

测试:

mysql -uroot -p123456 -h10.0.0.52 -P8066

use TESTDB

insert into t_area(id,name) values(1,'a')

insert into t_area(id,name) values(2,'b')

insert into t_area(id,name) values(3,'c')

insert into t_area(id,name) values(4,'d')

A

join

B

为了防止跨分片join,可以使用E-R模式

A join B

on a.xx=b.yy

join C

on A.id=C.id

<table name="A" dataNode="sh1,sh2" rule="mod-long">

<childTable name="B" joinKey="yy" parentKey="xx" />

</table>


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5905189.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-07
下一篇 2023-03-07

发表评论

登录后才能评论

评论列表(0条)

保存