补集的定义是什么?

补集的定义是什么?,第1张

定义:

一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作CsA.

在集合论和数学的其他分支中,存在补集的两种定义:相对补集和绝对补集。

补集可以看作两个集合相减,有时也称作差集。

1:若 A,B,C 是集合,则下列恒等式成立: C (A ∩B) = (C A) ∪(C B) C (A ∪B) = (C A) ∩(C B) C (B A) = (A ∩C) ∪(C B) (B A) ∩C = (B ∩C) A = B ∩(C A) (B A) ∪C = (B ∪C) (A C) A A = Φ Φ A =Φ A Φ = A 若给定全集 U,则 A 在 U 中的相对补集称为 A 的绝对补集(或简称补集),写作 CA,即: CA = U A

与补集有关的运算规律

求补律 A∪CuA=S A∩CuA=Φ 重点提示 学习补集的概念,首先要理解全集的相对性,补集符号CuA(由于补集符号打不出,用字母代替)有三层含义:①.A是U的一个子集,即A包含于U;②.CuA表示一个集合,且CuA包含于U;③.CuA是由U中所有不属于A的元素组成的集合,CuA与A没有公共元素,U中的元素分布在CuA与A这两个集合中。

补集是不属于一给定集合的所有元素的集合、该集合包含于含该给定集合的另一特定数学集合中。

补集一般指绝对补集,即一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集,在集合论和数学的其他分支中,存在补集的两种定义,相对补集和绝对补集。

补集

在集合论和数学的其他分支中,存在补集的两种定义,相对补集和绝对补集。相对补集指若A和B 是集合,则A 在B 中的相对补集是这样一个集合:其元素属于B但不属于A,B - A = { x| x∈B且x∉A}。

绝对补集指若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。

学习补集的概念,首先要理解全集的相对性,补集符号∁UA有三层含义:1、A是U的一个子集,即A⊆U;2、∁UA表示一个集合,且∁UA⊆U;3、∁UA是由U中所有不属于A的元素组成的集合,∁UA与A没有公共元素,U中的元素分布在这两个集合中。

你说的很像C的符号是像一个开口向右的U吧,是真包含于符号,读作“真包含于”。补集的一种符号是-,在表示集合的字母上加“-”,如集合A的补集读作“A补”。

补集,一般指绝对补集,指全集中不属于某一子集的所有元素组成的集合。

一般地,设S是一个集合, A是S的一个子集,由 S中所有不属于A的元素组成的集合,叫做子集 A在S中的 绝对补集(简称补集或余集)。

绝对补集:若 给定全集 U,有 A⊆U,则 A在 U中的 相对补集称为 A的 绝对补集(或简称 补集),写作∁ UA 。 

根据补集的定义,∁   SA={x|x∈U且x∉A},B-A={x|x∈B且x∉A}

A∩∁   UA=∅

A∪∁   UA=U


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5945888.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-09
下一篇 2023-03-09

发表评论

登录后才能评论

评论列表(0条)

保存