公式如下所示:
样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1))
总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n )
标准差的性质和应用
标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
标准差率计算公式:标准差σ=方差开平方。
标准差,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同
原因是它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。因而对于具有不同水平的数列或总体,就不宜直接用标准差来比较其标志变动度的大小,而需要将标准差与其相应的平均数对比,计算标准差系数,即采用相对数才能进行比较。
方差
方差是数据组中各数值与其均值离差平方的平均数,它能较好地反映出数据的离散程度,是实际中应用最广泛的离散程度测度值。方差越小,说明数据值与均值的平均距离越小,均值的代表性越好。
标准差与方差的联系
标准差与方差计算比较简便,又具有比较好的数学性质,是应用最广泛的统计离散程度的测度方法。但是标准差与方差只适用于数值型数据。此外,与均值一样,它们对极端值也很敏感。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)