mysql索引有哪几种

mysql索引有哪几种,第1张

在mysql中,索引是一种特殊的数据库结构,由数据表中的一列或多列组合而成,可以用来快速查询数据表中有某一特定值的记录。

通过索引,查询数据时不用读完记录的所有信息,而只是查询索引列即可。

通过索引,查询数据时不用读完记录的所有信息,而只是查询索引列。否则,数据库系统将读取每条记录的所有信息进行匹配。

可以把索引比作新华字典的音序表。例如,要查“库”字,如果不使用音序,就需要从字典的 400 页中逐页来找。但是,如果提取拼音出来,构成音序表,就只需要从 10 多页的音序表中直接查找。这样就可以大大节省时间。

因此,使用索引可以很大程度上提高数据库的查询速度,还有效的提高了数据库系统的性能。

索引的优缺点

索引有其明显的优势,也有其不可避免的缺点。

优点

索引的优点如下:

1、通过创建唯一索引可以保证数据库表中每一行数据的唯一性。

2、可以给所有的 MySQL 列类型设置索引。

3、可以大大加快数据的查询速度,这是使用索引最主要的原因。

4、在实现数据的参考完整性方面可以加速表与表之间的连接。

5、在使用分组和排序子句进行数据查询时也可以显著减少查询中分组和排序的时间

缺点

增加索引也有许多不利的方面,主要如下:

1、创建和维护索引组要耗费时间,并且随着数据量的增加所耗费的时间也会增加。

2、索引需要占磁盘空间,除了数据表占数据空间以外,每一个索引还要占一定的物理空间。如果有大量的索引,索引文件可能比数据文件更快达到最大文件尺寸。

3、当对表中的数据进行增加、删除和修改的时候,索引也要动态维护,这样就降低了数据的维护速度。

使用索引时,需要综合考虑索引的优点和缺点。

常见的索引类型:哈希表、有序数组、搜索树。

mysql之普通索引和唯一索引。

执行查询的语句是 select id from T where k=5

这个查询语句在索引树上查找的过程,先是通过 B+ 树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。

InnoDB的索引组织结构:

change buffer:持久化的数据。InnoDB将更新 *** 作缓存在 change buffer中,也就是说,change buffer 在内存中有拷贝,也会被写入到磁盘,主要节省的则是随机读磁盘的IO消耗。

change buffer 只限于用在普通索引的场景下,而不适用于唯一索引.

merge:将 change buffer 中的 *** 作应用到原数据页,得到最新结果的过程。

merge执行流程:

1、从磁盘读入数据页到内存

2、从change buffer里找出这个数据页的change buffer记录,依次应用,得到新版数据页

3、写redo log,这个redo log包含了数据的变更和change buffer的变更。

change buffer 用的是 buffer pool 里的内存,因此不能无限增大。change buffer 的大小,可以通过参数 innodb_change_buffer_max_size=50 表示 change buffer 的大小最多只能占用 buffer pool 的 50%。

如果要在这张表中插入一个新记录 (4,400) 的话,InnoDB 的处理流程是怎样的。

第一种情况是,这个记录要更新的目标页在内存中

这时,InnoDB 的处理流程如下:

第二种情况是,这个记录要更新的目标页不在内存中

这时,InnoDB 的处理流程如下:

mysql>insert into t(id,k) values(id1,k1),(id2,k2)当前 k 索引树的状态,查找到位置后,k1 所在的数据页在内存 (InnoDB buffer pool) 中,k2 所在的数据页不在内存中。

分析这条更新语句,你会发现它涉及了四个部分:内存、redo log(ib_log_fileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)。这条更新语句做了如下的 *** 作(按照图中的数字顺序):

带change buffer的更新过程:

select * from t where k in (k1, k2) ,如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读 *** 作就与系统表空间(ibdata1)和 redo log(ib_log_fileX)无关了.

如大家所知道的,Mysql目前主要有以下几种索引类型:FULLTEXT,HASH,BTREE,RTREE。

那么,这几种索引有什么功能和性能上的不同呢?

FULLTEXT

即为全文索引,目前只有MyISAM引擎支持。其可以在CREATE TABLE ,ALTER TABLE ,CREATE INDEX 使用,不过目前只有 CHAR、VARCHAR ,TEXT 列上可以创建全文索引。值得一提的是,在数据量较大时候,现将数据放入一个没有全局索引的表中,然后再用CREATE INDEX创建FULLTEXT索引,要比先为一张表建立FULLTEXT然后再将数据写入的速度快很多。

全文索引并不是和MyISAM一起诞生的,它的出现是为了解决WHERE name LIKE “%word%"这类针对文本的模糊查询效率较低的问题。在没有全文索引之前,这样一个查询语句是要进行遍历数据表 *** 作的,可见,在数据量较大时是极其的耗时的,如果没有异步IO处理,进程将被挟持,很浪费时间,当然这里不对异步IO作进一步讲解,想了解的童鞋,自行谷哥。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/5947757.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-09
下一篇 2023-03-09

发表评论

登录后才能评论

评论列表(0条)

保存