数据库运行过程中常见的故障有3类:事物故障、系统故障、介质故障。
恢复策略:
1、事物故障:
发生事务故障时,被迫中断的事务可能已对数据库进行丁修改,为了消除该事务对数据库的影响,要利用日志文件中所记载的信息,强行回滚该事务,将数据库恢复到修改前的初始状态。
为此,要检查日志文件中由这些事务所引起的发生变化的记录,取消这些没有完成的事务所做的一切改变,这类恢复 *** 作称为事务撤销。
2、系统故障:
系统故障的恢复要完成两方面的工作,既要撤销所有末完成的事务,还要重做所有已提交的事务,这样才能将数据库真正恢复到一致的状态。
3、介质故障:
介质故障比事务故障和系统故障发生的可能性要小,但这是最严重的一种故障,破坏性很大,磁盘上的物理数据和日志文件可能被破坏,这需要装入发生介质故障前最新的后备数据库副本,然后利用日志文件重做该副本后所运行的所有事务。
“数据故障恢复”和“完整性约束”、“并e799bee5baa6e4b893e5b19e31333431353364发控制”一样,都是数据库数据保护机制中的一种完整性控制。所有的系统都免不了会发生故障,有可能是硬件失灵,有可能是软件系统崩溃,也有可能是其他外界的原因,比如断电等等。
数据库运行的突然中断会使数据库处在一个错误的状态,而且故障排除后没有办法让系统精确地从断点继续执行下去。这就要求DBMS要有一套故障后的数据恢复机构,保证数据库能够回复到一致的、正确地状态去。
1. 概述
我们在考虑MySQL数据库的高可用的架构时,主要要考虑如下几方面:
如果数据库发生了宕机或者意外中断等故障,能尽快恢复数据库的可用性,尽可能的减少停机时间,保证业务不会因为数据库的故障而中断。
用作备份、只读副本等功能的非主节点的数据应该和主节点的数据实时或者最终保持一致。
当业务发生数据库切换时,切换前后的数据库内容应当一致,不会因为数据缺失或者数据不一致而影响业务。
关于对高可用的分级在这里我们不做详细的讨论,这里只讨论常用高可用方案的优缺点以及高可用方案的选型。
2. 高可用方案
2.1. 主从或主主半同步复制
使用双节点数据库,搭建单向或者双向的半同步复制。在5.7以后的版本中,由于lossless replication、logical多线程复制等一些列新特性的引入,使得MySQL原生半同步复制更加可靠。
常见架构如下:
通常会和proxy、keepalived等第三方软件同时使用,即可以用来监控数据库的 健康 ,又可以执行一系列管理命令。如果主库发生故障,切换到备库后仍然可以继续使用数据库。
优点:
架构比较简单,使用原生半同步复制作为数据同步的依据;
双节点,没有主机宕机后的选主问题,直接切换即可;
双节点,需求资源少,部署简单;
缺点:
完全依赖于半同步复制,如果半同步复制退化为异步复制,数据一致性无法得到保证;
需要额外考虑haproxy、keepalived的高可用机制。
2.2. 半同步复制优化
半同步复制机制是可靠的。如果半同步复制一直是生效的,那么便可以认为数据是一致的。但是由于网络波动等一些客观原因,导致半同步复制发生超时而切换为异步复制,那么这时便不能保证数据的一致性。所以尽可能的保证半同步复制,便可提高数据的一致性。
该方案同样使用双节点架构,但是在原有半同复制的基础上做了功能上的优化,使半同步复制的机制变得更加可靠。
可参考的优化方案如下:
2.2.1. 双通道复制
半同步复制由于发生超时后,复制断开,当再次建立起复制时,同时建立两条通道,其中一条半同步复制通道从当前位置开始复制,保证从机知道当前主机执行的进度。另外一条异步复制通道开始追补从机落后的数据。当异步复制通道追赶到半同步复制的起始位置时,恢复半同步复制。
2.2.2. binlog文件服务器
搭建两条半同步复制通道,其中连接文件服务器的半同步通道正常情况下不启用,当主从的半同步复制发生网络问题退化后,启动与文件服务器的半同步复制通道。当主从半同步复制恢复后,关闭与文件服务器的半同步复制通道。
优点:
双节点,需求资源少,部署简单;
架构简单,没有选主的问题,直接切换即可
相比于原生复制,优化后的半同步复制更能保证数据的一致性。
缺点:
需要修改内核源码或者使用mysql通信协议。需要对源码有一定的了解,并能做一定程度的二次开发。
依旧依赖于半同步复制,没有从根本上解决数据一致性问题。
2.3. 高可用架构优化
将双节点数据库扩展到多节点数据库,或者多节点数据库集群。可以根据自己的需要选择一主两从、一主多从或者多主多从的集群。
由于半同步复制,存在接收到一个从机的成功应答即认为半同步复制成功的特性,所以多从半同步复制的可靠性要优于单从半同步复制的可靠性。并且多节点同时宕机的几率也要小于单节点宕机的几率,所以多节点架构在一定程度上可以认为高可用性是好于双节点架构。
但是由于数据库数量较多,所以需要数据库管理软件来保证数据库的可维护性。可以选择MMM、MHA或者各个版本的proxy等等。常见方案如下:
2.3.1. MHA+多节点集群
MHA Manager会定时探测集群中的master节点,当master出现故障时,它可以自动将最新数据的slave提升为新的master,然后将所有其他的slave重新指向新的master,整个故障转移过程对应用程序完全透明。
MHA Node运行在每台MySQL服务器上,主要作用是切换时处理二进制日志,确保切换尽量少丢数据。
MHA也可以扩展到如下的多节点集群:
优点:
可以进行故障的自动检测和转移
可扩展性较好,可以根据需要扩展MySQL的节点数量和结构
相比于双节点的MySQL复制,三节点/多节点的MySQL发生不可用的概率更低
缺点:
至少需要三节点,相对于双节点需要更多的资源
逻辑较为复杂,发生故障后排查问题,定位问题更加困难
数据一致性仍然靠原生半同步复制保证,仍然存在数据不一致的风险
可能因为网络分区发生脑裂现象
2.3.2. zookeeper+proxy
Zookeeper使用分布式算法保证集群数据的一致性,使用zookeeper可以有效的保证proxy的高可用性,可以较好的避免网络分区现象的产生。
优点:
较好的保证了整个系统的高可用性,包括proxy、MySQL
扩展性较好,可以扩展为大规模集群
缺点:
数据一致性仍然依赖于原生的mysql半同步复制
引入zk,整个系统的逻辑变得更加复杂
2.4. 共享存储
共享存储实现了数据库服务器和存储设备的解耦,不同数据库之间的数据同步不再依赖于MySQL的原生复制功能,而是通过磁盘数据同步的手段,来保证数据的一致性。
2.4.1. SAN共享储存
SAN的概念是允许存储设备和处理器(服务器)之间建立直接的高速网络(与LAN相比)连接,通过这种连接实现数据的集中式存储。常用架构如下:
使用共享存储时,MySQL服务器能够正常挂载文件系统并 *** 作,如果主库发生宕机,备库可以挂载相同的文件系统,保证主库和备库使用相同的数据。
优点:
两节点即可,部署简单,切换逻辑简单;
很好的保证数据的强一致性;
不会因为MySQL的逻辑错误发生数据不一致的情况;
缺点:
需要考虑共享存储的高可用;
价格昂贵;
2.4.2. DRBD磁盘复制
DRBD是一种基于软件、基于网络的块复制存储解决方案,主要用于对服务器之间的磁盘、分区、逻辑卷等进行数据镜像,当用户将数据写入本地磁盘时,还会将数据发送到网络中另一台主机的磁盘上,这样的本地主机(主节点)与远程主机(备节点)的数据就可以保证实时同步。常用架构如下:
当本地主机出现问题,远程主机上还保留着一份相同的数据,可以继续使用,保证了数据的安全。
DRBD是linux内核模块实现的快级别的同步复制技术,可以与SAN达到相同的共享存储效果。
优点:
两节点即可,部署简单,切换逻辑简单;
相比于SAN储存网络,价格低廉;
保证数据的强一致性;
缺点:
对io性能影响较大;
从库不提供读 *** 作;
2.5. 分布式协议
分布式协议可以很好解决数据一致性问题。比较常见的方案如下:
2.5.1. MySQL cluster
MySQL cluster是官方集群的部署方案,通过使用NDB存储引擎实时备份冗余数据,实现数据库的高可用性和数据一致性。
优点:
全部使用官方组件,不依赖于第三方软件;
可以实现数据的强一致性;
缺点:
国内使用的较少;
配置较复杂,需要使用NDB储存引擎,与MySQL常规引擎存在一定差异;
至少三节点;
2.5.2. Galera
基于Galera的MySQL高可用集群, 是多主数据同步的MySQL集群解决方案,使用简单,没有单点故障,可用性高。常见架构如下:
优点:
多主写入,无延迟复制,能保证数据强一致性;
有成熟的社区,有互联网公司在大规模的使用;
自动故障转移,自动添加、剔除节点;
缺点:
需要为原生MySQL节点打wsrep补丁
只支持innodb储存引擎
至少三节点;
2.5.3. POAXS
Paxos 算法解决的问题是一个分布式系统如何就某个值(决议)达成一致。这个算法被认为是同类算法中最有效的。Paxos与MySQL相结合可以实现在分布式的MySQL数据的强一致性。常见架构如下:
优点:
多主写入,无延迟复制,能保证数据强一致性;
有成熟理论基础;
自动故障转移,自动添加、剔除节点;
缺点:
只支持innodb储存引擎
至少三节点;
3. 总结
随着人们对数据一致性的要求不断的提高,越来越多的方法被尝试用来解决分布式数据一致性的问题,如MySQL自身的优化、MySQL集群架构的优化、Paxos、Raft、2PC算法的引入等等。
而使用分布式算法用来解决MySQL数据库数据一致性的问题的方法,也越来越被人们所接受,一系列成熟的产品如PhxSQL、MariaDB Galera Cluster、Percona XtraDB Cluster等越来越多的被大规模使用。
随着官方MySQL Group Replication的GA,使用分布式协议来解决数据一致性问题已经成为了主流的方向。期望越来越多优秀的解决方案被提出,MySQL高可用问题可以被更好的解决。
参考: https://www.jianshu.com/p/5e0062f6cf62
图中是两组分片,红色我们称为shard1,蓝色我们称为shard2
51 52是服务器
两个3307互为主从(双主),3309是本地3307的从库
说明:没有明确说明是只在某一个节点上做的,就是两个节点都做
两台虚拟机 db01 db02
每台创建四个mysql实例:3307 3308 3309 3310
mysql软件我们之前已完成二进制安装,直接初始化即可
我们server-id规划为:db01上是7/8/9/10,db02上是17/18/19/20
"箭头指向谁是主库"
10.0.0.51:3307<-----> 10.0.0.52:3307
10.0.0.51:3309------> 10.0.0.51:3307
10.0.0.52:3309------> 10.0.0.52:3307
两个分片,每个分片四个mysql节点
shard1:
Master:10.0.0.51:3307
slave1:10.0.0.51:3309
Standby Master:10.0.0.52:3307
slave2:10.0.0.52:3309
shard2:
Master:10.0.0.52:3308
slave1:10.0.0.52:3310
Standby Master:10.0.0.51:3308
slave2:10.0.0.51:3310
shard1
10.0.0.51:3307 <----->10.0.0.52:3307
db02
db01
db02
10.0.0.51:3309 ------>10.0.0.51:3307
db01
10.0.0.52:3309 ------>10.0.0.52:3307
db02
shard2
10.0.0.52:3308 <----->10.0.0.51:3308
db01
db02
db01
10.0.0.52:3310 ----->10.0.0.52:3308
db02
10.0.0.51:3310 ----->10.0.0.51:3308
db01
这个复制用户在谁上建都行
注:如果中间出现错误,在每个节点进行执行以下命令
常见方案:
360 Atlas-Sharding 360
Alibaba cobar 阿里
Mycat 开源
TDDL 淘宝
Heisenberg 百度
Oceanus 58同城
Vitess 谷歌
OneProxy
DRDS 阿里云
我们装的是openjdk,不是官方的那个
Mycat-server-xxxxx.linux.tar.gz
http://dl.mycat.io/
配置环境变量
我们mycat的命令也是在bin目录下
启动
8066就是对外提供服务的端口,9066是管理端口
连接mycat:
默认123456
db01:
我们一般先把原schema.xml备份,然后自己新写一个:
xml和html看起来差不多,xml是从下往上调用的
前三行我们不用看,直接从第四行schema开始看起:
定义了schema,然后以/schema结尾
为什么要用逻辑库?
业务透明化
此配置文件就是实现读写分离的配置
重启mycat
读写分离测试
总结:
以上案例实现了1主1从的读写分离功能,写 *** 作落到主库,读 *** 作落到从库.如果主库宕机,从库不能在继续提供服务了。
我们推荐这种架构
一写三读,
不设置双写的原因是:性能没提升多少,反而引起主键冲突的情况
配置文件:
之后重启:mycat restart
真正的 writehost:负责写 *** 作的writehost
standby writeHost :和readhost一样,只提供读服务
我们此处写了两个writehost,默认使用第一个
当写节点宕机后,后面跟的readhost也不提供服务,这时候standby的writehost就提供写服务,
后面跟的readhost提供读服务
测试:
读写分离测试
对db01 3307节点进行关闭和启动,测试读写 *** 作
结果应为另一台(52)的3307(17)是写,3309(19)是读
一旦7号节点恢复,此时因为7落后了,写节点仍是17
balance属性
负载均衡类型,目前的取值有3种:
writeType属性
负载均衡类型,目前的取值有2种:
switchType属性
-1 表示不自动切换
1 默认值,自动切换
2 基于MySQL主从同步的状态决定是否切换 ,心跳语句为 show slave status
datahost其他配置
<dataHost name="localhost1" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="native" switchType="1">
maxCon="1000":最大的并发连接数
minCon="10" :mycat在启动之后,会在后端节点上自动开启的连接线程,长连接,好处是连接速度快,弊端是占内存
tempReadHostAvailable="1"
这个一主一从时(1个writehost,1个readhost时),可以开启这个参数,如果2个writehost,2个readhost时
<heartbeat>select user()</heartbeat> 监测心跳
其他参数sqlMaxLimit自动分页,必须在启用分表的情况下才生效
创建测试库和表:
我们重启mycat后连接到8066
发现跟一个库一样,实际上已经分到不同的物理硬件上了
分片:对一个"bigtable",比如说t3表
热点数据表 核心表
(1)行数非常多,800w下坡
(2)访问非常频繁
分片的目的:
(1)将大数据量进行分布存储
(2)提供均衡的访问路由
分片策略:
范围 range 800w 1-400w 400w01-800w 不适用于业务访问不均匀的情况
取模 mod(取余数) 和节点的数量进行取模
枚举 按枚举的种类分,如移动项目按省份分
哈希 hash
时间 流水
优化关联查询(否则join的表在不同分片上,效率会比单库还要低)
全局表
ER分片
案例:移动统一:先拆出边缘业务,再按地域分片,但对应用来说是统一的
vim rule.xml
<tableRule name="auto-sharding-long">
<rule>
<columns>id</columns>
<algorithm>rang-long</algorithm>
</rule>
<function name="rang-long"
class="io.mycat.route.function.AutoPartitionByLong">
<property name="mapFile">autopartition-long.txt</property>
</function>
===================================
vim autopartition-long.txt
0-10=0
11-20=1
创建测试表:
mysql -S /data/3307/mysql.sock -e "use taobaocreate table t3 (id int not null primary key auto_increment,name varchar(20) not null)"
mysql -S /data/3308/mysql.sock -e "use taobaocreate table t3 (id int not null primary key auto_increment,name varchar(20) not null)"
测试:
重启mycat
mycat restart
mysql -uroot -p123456 -h 127.0.0.1 -P 8066
insert into t3(id,name) values(1,'a')
insert into t3(id,name) values(2,'b')
insert into t3(id,name) values(3,'c')
insert into t3(id,name) values(4,'d')
insert into t3(id,name) values(11,'aa')
insert into t3(id,name) values(12,'bb')
insert into t3(id,name) values(13,'cc')
insert into t3(id,name) values(14,'dd')
取余分片方式:分片键(一个列)与节点数量进行取余,得到余数,将数据写入对应节点
vim schema.xml
<table name="t4" dataNode="sh1,sh2" rule="mod-long" />
vim rule.xml
<property name="count">2</property>
准备测试环境
创建测试表:
mysql -S /data/3307/mysql.sock -e "use taobaocreate table t4 (id int not null primary key auto_increment,name varchar(20) not null)"
mysql -S /data/3308/mysql.sock -e "use taobaocreate table t4 (id int not null primary key auto_increment,name varchar(20) not null)"
重启mycat
mycat restart
测试:
mysql -uroot -p123456 -h10.0.0.52 -P8066
use TESTDB
insert into t4(id,name) values(1,'a')
insert into t4(id,name) values(2,'b')
insert into t4(id,name) values(3,'c')
insert into t4(id,name) values(4,'d')
分别登录后端节点查询数据
mysql -S /data/3307/mysql.sock
use taobao
select * from t4
mysql -S /data/3308/mysql.sock
use taobao
select * from t4
t5 表
id name telnum
1 bj 1212
2 sh 22222
3 bj 3333
4 sh 44444
5 bj 5555
sharding-by-intfile
vim schema.xml
<table name="t5" dataNode="sh1,sh2" rule="sharding-by-intfile" />
vim rule.xml
<tableRule name="sharding-by-intfile">
<rule><columns>name</columns>
<algorithm>hash-int</algorithm>
</rule>
</tableRule>
<function name="hash-int" class="org.opencloudb.route.function.PartitionByFileMap">
<property name="mapFile">partition-hash-int.txt</property>
<property name="type">1</property>
<property name="defaultNode">0</property>
</function>
partition-hash-int.txt 配置:
bj=0
sh=1
DEFAULT_NODE=1
columns 标识将要分片的表字段,algorithm 分片函数, 其中分片函数配置中,mapFile标识配置文件名称
准备测试环境
mysql -S /data/3307/mysql.sock -e "use taobaocreate table t5 (id int not null primary key auto_increment,name varchar(20) not null)"
mysql -S /data/3308/mysql.sock -e "use taobaocreate table t5 (id int not null primary key auto_increment,name varchar(20) not null)"
重启mycat
mycat restart
mysql -uroot -p123456 -h10.0.0.51 -P8066
use TESTDB
insert into t5(id,name) values(1,'bj')
insert into t5(id,name) values(2,'sh')
insert into t5(id,name) values(3,'bj')
insert into t5(id,name) values(4,'sh')
insert into t5(id,name) values(5,'tj')
a b c d
join
t
select t1.name ,t.x from t1
join t
select t2.name ,t.x from t2
join t
select t3.name ,t.x from t3
join t
使用场景:
如果你的业务中有些数据类似于数据字典,比如配置文件的配置,
常用业务的配置或者数据量不大很少变动的表,这些表往往不是特别大,
而且大部分的业务场景都会用到,那么这种表适合于Mycat全局表,无须对数据进行切分,
要在所有的分片上保存一份数据即可,Mycat 在Join *** 作中,业务表与全局表进行Join聚合会优先选择相同分片内的全局表join,
避免跨库Join,在进行数据插入 *** 作时,mycat将把数据分发到全局表对应的所有分片执行,在进行数据读取时候将会随机获取一个节点读取数据。
vim schema.xml
<table name="t_area" primaryKey="id" type="global" dataNode="sh1,sh2" />
后端数据准备
mysql -S /data/3307/mysql.sock
use taobao
create table t_area (id int not null primary key auto_increment,name varchar(20) not null)
mysql -S /data/3308/mysql.sock
use taobao
create table t_area (id int not null primary key auto_increment,name varchar(20) not null)
重启mycat
mycat restart
测试:
mysql -uroot -p123456 -h10.0.0.52 -P8066
use TESTDB
insert into t_area(id,name) values(1,'a')
insert into t_area(id,name) values(2,'b')
insert into t_area(id,name) values(3,'c')
insert into t_area(id,name) values(4,'d')
A
join
B
为了防止跨分片join,可以使用E-R模式
A join B
on a.xx=b.yy
join C
on A.id=C.id
<table name="A" dataNode="sh1,sh2" rule="mod-long">
<childTable name="B" joinKey="yy" parentKey="xx" />
</table>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)