MySQL服务器最大连接数如何设置才合理?

MySQL服务器最大连接数如何设置才合理?,第1张

MySQL服务器连接数并不是要达到最大的100%为好,还是要具体问题具体分析,下面就对MySQL服务器最大连接数的合理设置进行了详尽的分析,供您参考。\x0d\x0a我们经常会遇见“MySQL:ERROR1040:Toomanyconnections”的情况,一种是访问量确实很高,MySQL服务器抗不住,这个时候就要考虑增加从服务器分散读压力,另外一种情况是MySQL配置文件中max_connections值过小:\x0d\x0amysql>showvariableslike'max_connections'\x0d\x0a+-----------------+-------+\x0d\x0a|Variable_name|Value|\x0d\x0a+-----------------+-------+\x0d\x0a|max_connections|256|\x0d\x0a+-----------------+-------+\x0d\x0a这台MySQL服务器最大连接数是256,然后查询一下服务器响应的最大连接数:\x0d\x0amysql>showglobalstatuslike'Max_used_connections'\x0d\x0aMySQL服务器过去的最大连接数是245,没有达到服务器连接数上限256,应该没有出现1040错误,比较理想的设置是:\x0d\x0aMax_used_connections/max_connections*100%≈85%\x0d\x0a最大连接数占上限连接数的85%左右,如果发现比例在10%以下,MySQL服务器连接上线就设置得过高了。

max_user_connections 是 MySQL 用户连接数的最大值设置,整段语句的意思是:服务器的 MySQL

的最大连接数参数设置不足。解决方法:修改 MySQL 安装目录下 my.ini 或者 my.cnf 文件内的

max_user_connections 参数的数值,重启 MySQL 服务器。

但是正常来说,MySQL默认的100个连接数是足够的。我们需要从程序上去考虑。MySQL的默认最大连接数为100(N),实际给普通

用户使用只有N-1个,保留一个连接是留给超级管理员使用的,防止连接占满了不会把管理员也踢出来。很多网站在运行的时候都会出现连接数受限现象,我认为

十之八九并非是网站的真实访问量太大导致连接数超标,更多是因为我们在设计网站程序的时候采用了不合理的设计架构或数据结构引起的。非正常连接超限可能原

因如下(天缘即时归纳未必完整或无错讹仅供参考):

类似人数、在线时间、浏览数等统计功能与主程序数据库同属一个数据空间时就很容易出现。

复杂的动态页尤其是用户每次浏览都涉及到多数据库或多表 *** 作时候也很容易出现。

还有就是程序设计的不合理(比如复杂运算、等待等 *** 作放置在数据库交互行为中间进行),或者程序存在释放BUG。

计算机硬件配置太低却安装太高版、太高配置的MySQL。

未采用缓存技术。

数据库未经过优化或表格设计及其复杂。

等等一些原因,都会延长数据库的数据交互时间或增加交互次数。所以,如果大家遇到这类问题,首先要考虑程序是否存在BUG导致连接释放失败,

再次就是考虑优化软硬件。当然修改MySQL连接数也是软件优化的 *** 作方法之一,希望大家都能够本着学习的态度通过研究一下自身的原因从而解决这一问题。

如果实在是找不到原因,那就只好先修改连接数,暂缓定位真实原因了。

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步 *** 作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新 *** 作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20

B:

select * from t1 where f1 = 30

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql>desc t1+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表记录数:

mysql>select count(*) from t1+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

mysql>explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "3243.65"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info": {        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql>explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "441.09"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info": {        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql>explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "534.34"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info": {        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql>explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "5.23"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/6116969.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-15
下一篇 2023-03-15

发表评论

登录后才能评论

评论列表(0条)

保存