redis做mysql的缓存

redis做mysql的缓存,第1张

redis缓存其实就是把经常访问的数据放到redis里面,用户查询的时候先去redis查询,没有查到就执行sql语句查询,同时把数据同步到redis里面。redis只做读 *** 作,在内存中查询速度快。

使用redis做缓存必须解决两个问题,首先就是确定用何种数据结构存储来自mysql的数据;确定数据结构之后就是需要确定用什么标识来作为数据的key。

mysql是按照表存储数据的,这些表是由若干行组成。每一次执行select查询,mysql都会返回一个结果集,这个结果是由若干行组成的。redis有五种数据结构:列表list,哈希hash,字符串string,集合set,sorted set(有序集合),对比几种数据结构,string和hash是比较适合存储行的数据结构,可以把数据转成json字符串存入redis。

全量遍历键: keys pattern keys *

有人说 KEYS 相当于关系性数据的库的 select * ,在生产环境几乎是要禁用的

不管上面说的对不对, keys 肯定是有风险的。那我们就换一种方案,在存数据的时候。把数据的键存一下,也存到redis里面选hash类型,那么取的时候就可以直接通过这个hash获取所有的值,自我感觉非常好用!

我们都知道 MySQL 的 Table Cache 是表定义的缓存,江湖上流传着各种对这个参数的调优方法。

table cache 的作用,就是节约读取表结构文件的开销。对于table cache 是否命中,其实table cache 是针对于线程的,每个线程有自己的缓存,只缓存本线程的表结构定义。不过我们发现,strace 中没有关于表结构文件的 open *** 作(只有 stat *** 作,定位表结构文件是否存在),也就是说 table cache 不命中,不一定需要读取表结构文件。这种感觉好像是:在不命中 table cache 时,命中了另外一个表结构缓存。

运维建议:

我们读一下 MySQL 的文档,关于 table_open_cache 的建议值公式:建议值 = 最大并发数 * join 语句涉及的表的最大个数。

通过实验我们容易理解:table_cache 是针对于线程的,所以需要最大并发数个缓存。另外,一个语句 join 涉及的表,需要同时在缓存中存在。所以最小的缓存大小,等于语句 join 涉及的表的最大个数。将这两个数相乘,就得到了 MySQL 的建议值公式。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zaji/7091284.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-01
下一篇 2023-04-01

发表评论

登录后才能评论

评论列表(0条)

保存