而MySQL另外一个最流行的存储引擎之一Innodb存储数据的策略是分为两种的,一种是共享表空间存储方式,还有一种是独享表空间存储方式。
当使用共享表空间存储方式的时候,Innodb的所有数据保存在一个单独的表空间里面,而这个表空间可以由很多个文件组成,一个表可以跨多个文件存在,所 以其大小限制不再是文件大小的限制,而是其自身的限制。从Innodb的官方文档中可以看到,其表空间的最大限制为64TB,也就是说,Innodb的单 表限制基本上也在64TB左右了,当然这个大小是包括这个表的所有索引等其他相关数据。
而当使用独享表空间来存放Innodb的表的时候,每个表的数据以一个单独的文件来存放,这个时候的单表限制,又变成文件系统的大小限制了。
mysql 服务无法启动的原因有很多:可能端口被占用;可能my.cnf配置了错误的参数;也有可能没有初始数据库,还有可能是其他原因。大多数原因都可以通过先注销掉原有的服务、重新装载服务、之后再重新启动的方法解决。也可以尝试下以下方法:
1、将目录中配置文件my.default.ini改名为my.ini移至bin目录下。
2、启动命令行,将目录切换到mysql安装目录的bin目录下。
3、接下来,在命令行执行命令:mysqld --initialize --user=mysql --console
4、注意,上一个步骤会获得一个临时密码,需要记录,之后会用到。
5、接下来在控制台以命令行输入: mysqld --install,进行安装服务 *** 作。
6、之后,在任务管理器找到“服务”,启动其中的MYSQL服务即可。
7、之后,输入命令行mysql -uroot -p,利用之前的临时密码输入即可登录数据库成功。
8、修改临时密码,设置密码:mysqladmin -u USER -p password PASSWORD,注意USER和PASSWORD为自己定义的数值。
扩展资料
数据库就相当于现实中的仓库。每个数据库都有一个或多个不同的 API 用于创建,访问,管理,搜索和复制所保存的数据。我们也可以将数据存储在文件中,但是在文件中读写数据速度相对较慢。
使用关系型数据库管理系统(RDBMS)来存储和管理大数据量。所谓的关系型数据库,是建立在关系模型基础上的数据库,借助于集合代数等数学概念和方法来处理数据库中的数据。MySQL 就是一种关系型数据库。
如果服务无法启动,首先查看MySQL的服务是否存在。如果安装服务失败,则可新建项MySQL57建立项目。然后找到新建的项,检查下ImagePath的路径是否正确。如果路径不对,修改过来。重启计算机,再次启动服务,并可以成功运行MySQL服务。
参考资料:百度百科-MySQL
通常来说,当数据多、并发量大的时候,架构中可以引入Redis,帮助提升架构的整体性能,减少Mysql(或其他数据库)的压力,但不是使用Redis,就不用MySQL。
因为Redis的性能十分优越,可以支持每秒十几万此的读/写 *** 作,并且它还支持持久化、集群部署、分布式、主从同步等,Redis在高并发的场景下数据的安全和一致性,所以它经常用于两个场景:
缓存
判断数据是否适合缓存到Redis中,可以从几个方面考虑: 会经常查询么?命中率如何?写 *** 作多么?数据大小?
我们经常采用这样的方式将数据刷到Redis中:查询的请求过来,现在Redis中查询,如果查询不到,就查询数据库拿到数据,再放到缓存中,这样第二次相同的查询请求过来,就可以直接在Redis中拿到数据;不过要注意【缓存穿透】的问题。
缓存的刷新会比较复杂,通常是修改完数据库之后,还需要对Redis中的数据进行 *** 作;代码很简单,但是需要保证这两步为同一事务,或最终的事务一致性。
高速读写
常见的就是计数器,比如一篇文章的阅读量,不可能每一次阅读就在数据库里面update一次。
高并发的场景很适合使用Redis,比如双11秒杀,库存一共就一千件,到了秒杀的时间,通常会在极为短暂的时间内,有数万级的请求达到服务器,如果使用数据库的话,很可能在这一瞬间造成数据库的崩溃,所以通常会使用Redis(秒杀的场景会比较复杂,Redis只是其中之一,例如如果请求超过某个数量的时候,多余的请求就会被限流)。
这种高并发的场景,是当请求达到服务器的时候,直接在Redis上读写,请求不会访问到数据库;程序会在合适的时间,比如一千件库存都被秒杀,再将数据批量写到数据库中。
所以通常来说,在必要的时候引入Redis,可以减少MySQL(或其他)数据库的压力,两者不是替代的关系 。
我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。
Redis和MySQL的应用场景是不同的。
通常来说,没有说用Redis就不用MySQL的这种情况。
因为Redis是一种非关系型数据库(NoSQL),而MySQL是一种关系型数据库。
和Redis同类的数据库还有MongoDB和Memchache(其实并没有持久化数据)
那关系型数据库现在常用的一般有MySQL,SQL Server,Oracle。
我们先来了解一下关系型数据库和非关系型数据库的区别吧。
1.存储方式关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。而Nosql数据库则与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档、键值对或者图结构。
2.存储结构关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改这些数据比较困难。而Nosql数据库基于动态结构,使用与非结构化数据。因为Nosql数据库是动态结构,可以很容易适应数据类型和结构的变化。
3.存储规范关系型数据库的数据存储为了更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个 *** 作设计到多张表的时候,数据管理就显得有点麻烦。而Nosql数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分隔开,而是存储成了一个整体,这样整块数据更加便于读写
4.存储扩展这可能是两者之间最大的区别,关系型数据库是纵向扩展,也就是说想要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中, *** 作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。虽然有很大的扩展空间,但是最终会达到纵向扩展的上限。而Nosql数据库是横向扩展的,它的存储天然就是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。
5.查询方式关系型数据库通过结构化查询语言来 *** 作数据库(就是我们通常说的SQL)。SQL支持数据库CURD *** 作的功能非常强大,是业界的标准用法。而Nosql查询以块为单元 *** 作数据,使用的是非结构化查询语言(UnQl),它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(比如索引)来加快查询 *** 作,而Nosql更简单更精确的数据访问模式。
6.事务关系型数据库遵循ACID规则(原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)),而Nosql数据库遵循BASE原则(基本可用(Basically Availble)、软/柔性事务(Soft-state )、最终一致性(Eventual Consistency))。由于关系型数据库的数据强一致性,所以对事务的支持很好。关系型数据库支持对事务原子性细粒度控制,并且易于回滚事务。而Nosql数据库是在CAP(一致性、可用性、分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务的支持不是很好,虽然也可以使用事务,但是并不是Nosql的闪光点。
7.性能关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据的时候效率非常低。而Nosql存储的格式都是key-value类型的,并且存储在内存中,非常容易存储,而且对于数据的 一致性是 弱要求。Nosql无需sql的解析,提高了读写性能。
8.授权方式大多数的关系型数据库都是付费的并且价格昂贵,成本较大(MySQL是开源的,所以应用的场景最多),而Nosql数据库通常都是开源的。
所以,在实际的应用环境中,我们一般会使用MySQL存储我们的业务过程中的数据,因为这些数据之间的关系比较复杂,我们常常会需要在查询一个表的数据时候,将其他关系表的数据查询出来,例如,查询某个用户的订单,那至少是需要用户表和订单表的数据。
查询某个商品的销售数据,那可能就会需要用户表,订单表,订单明细表,商品表等等。
而在这样的使用场景中,我们使用Redis来存储的话,也就是KeyValue形式存储的话,其实并不能满足我们的需要。
即使Redis的读取效率再高,我们也没法用。
但,对于某些没有关联少,且需要高频率读写,我们使用Redis就能够很好的提高整个体统的并发能力。
例如商品的库存信息,我们虽然在MySQL中会有这样的字段,但是我们并不想MySQL的数据库被高频的读写,因为使用这样会导致我的商品表或者库存表IO非常高,从而影响整个体统的效率。
所以,对于这样的数据,且有没有什么复杂逻辑关系(就只是隶属于SKU)的数据,我们就可以放在Redis里面,下单直接在Redis中减掉库存,这样,我们的订单的并发能力就能够提高了。
个人觉得应该站出来更正一下,相反的数据量大,更不应该用redis。
为什么?
因为redis是内存型数据库啊,是放在内存里的。
设想一下,假如你的电脑100G的资料,都用redis来存储,那么你需要100G以上的内存!
使用场景Redis最明显的用例之一是将其用作缓存。只是保存热数据,或者具有过期的cache。
例如facebook,使用Memcached来作为其会话缓存。
总之,没有见过哪个大公司数据量大了,换掉mysql用redis的。
题主你错了,不是用redis代替MySQL,而是引入redis来优化。
BAT里越来越多的项目组已经采用了redis+MySQL的架构来开发平台工具。
如题主所说,当数据多的时候,MySQL的查询效率会大打折扣。我们通常默认如果查询的字段包含索引的话,返回是毫秒级别的。但是在实际工作中,我曾经遇到过一张包含10个字段的表,1800万+条数据,当某种场景下,我们不得不根据一个未加索引的字段进行精确查询的时候,单条sql语句的执行时长有时能够达到2min以上,就更别提如果用like这种模糊查询的话,其效率将会多么低下。
我们最开始是希望能够通过增加索引的方式解决,但是面对千万级别的数据量,我们也不敢贸然加索引,因为一旦数据库hang住,期间的所有数据库写入请求都会被放到等待队列中,如果请求是通过http请求发过来的,很有可能导致服务发生分钟级别的超时不响应。
经过一番调研,最终敲定的解决方案是引入redis作为缓存。redis具有运行效率高,数据查询速度快,支持多种存储类型以及事务等优势,我们把经常读取,而不经常改动的数据放入redis中,服务器读取这类数据的时候时候,直接与redis通信,极大的缓解了MySQL的压力。
然而,我在上面也说了,是redis+MySQL结合的方式,而不是替代。原因就是redis虽然读写很快,但是不适合做数据持久层,主要原因是使用redis做数据落盘是要以效率作为代价的,即每隔制定的时间,redis就要去进行数据备份/落盘,这对于单线程的它来说,势必会因“分心”而影响效率,结果得不偿失。
楼主你好,首先纠正下,数据多并不是一定就用Redis,Redis归属于NoSQL数据库中,其特点拥有高性能读写数据速度,主要解决业务效率瓶颈。下面就详细说下Redis的相比MySQL优点。( 关于Redis详细了解参见我近期文章:https://www.toutiao.com/i6543810796214813187/ )
读写异常快
Redis非常快,每秒可执行大约10万次的读写速度。
丰富的数据类型
Redis支持丰富的数据类型,有二进制字符串、列表、集合、排序集和散列等等。这使得Redis很容易被用来解决各种问题,因为我们知道哪些问题可以更好使用地哪些数据类型来处理解决。
原子性Redis的所有 *** 作都是原子 *** 作,这确保如果两个客户端并发访问,Redis服务器能接收更新的值。
丰富实用工具 支持异机主从复制Redis支持主从复制的配置,它可以实现主服务器的完全拷贝。
以上为开发者青睐Redis的主要几个可取之处。但是,请注意实际生产环境中企业都是结合Redis和MySQL的特定进行不同应用场景的取舍。 如缓存——热数据、计数器、消息队列(与ActiveMQ,RocketMQ等工具类似)、位 *** 作(大数据处理)、分布式锁与单线程机制、最新列表(如新闻列表页面最新的新闻列表)以及排行榜等等 可以看见Redis大显身手的场景。可是对于严谨的数据准确度和复杂的关系型应用MySQL等关系型数据库依然不可替。
web应用中一般采用MySQL+Redis的方式,web应用每次先访问Redis,如果没有找到数据,才去访问MySQL。
本质区别1、mysql:数据放在磁盘 redis:数据放在内存。
首先要知道mysql存储在磁盘里,redis存储在内存里,redis既可以用来做持久存储,也可以做缓存,而目前大多数公司的存储都是mysql + redis,mysql作为主存储,redis作为辅助存储被用作缓存,加快访问读取的速度,提高性能。
使用场景区别1、mysql支持sql查询,可以实现一些关联的查询以及统计;
2、redis对内存要求比较高,在有限的条件下不能把所有数据都放在redis;
3、mysql偏向于存数据,redis偏向于快速取数据,但redis查询复杂的表关系时不如mysql,所以可以把热门的数据放redis,mysql存基本数据。
mysql的运行机制mysql作为持久化存储的关系型数据库,相对薄弱的地方在于每次请求访问数据库时,都存在着I/O *** 作,如果反复频繁的访问数据库。第一:会在反复链接数据库上花费大量时间,从而导致运行效率过慢;第二:反复地访问数据库也会导致数据库的负载过高,那么此时缓存的概念就衍生了出来。
Redis持久化由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数据保存到磁盘上,当redis重启后,可以从磁盘中恢复数据。redis提供两种方式进行持久化,一种是RDB持久化(原理是将Reids在内存中的数据库记录定时dump到磁盘上的RDB持久化),另外一种是AOF(append only file)持久化(原理是将Reids的 *** 作日志以追加的方式写入文件)。
redis是放在内存的~!
数据量多少绝对不是选择redis和mysql的准则,因为无论是mysql和redis都可以集群扩展,约束它们的只是硬件(即你有没有那么多钱搭建上千个组成的集群),我个人觉得数据读取的快慢可能是选择的标准之一,另外工作中往往是两者同是使用,因为mysql存储在硬盘,做持久化存储,而redis存储在内存中做缓存提升效率。
关系型数据库是必不可少的,因为只有关系型数据库才能提供给你各种各样的查询方式。如果有一系列的数据会频繁的查询,那么就用redis进行非持久化的存储,以供查询使用,是解决并发性能问题的其中一个手段
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)